Kamala Shiie

Ji Case Mod 446 Voltage Regulator Wiring Diagram

1. Abadier M, Haghayegh Jahromi N, Cardoso Alves L, Boscacci R, Vestweber D, Barnum S, Deutsch U, Engelhardt B, Lyck R. Cell surface levels of endothelial ICAM-1 influence the transcellular or paracellular T-cell diapedesis across the blood-brain barrier. Eur J Immunol 45: 1043–1058, 2015. doi:10.1002/eji.201445125. [PubMed] [CrossRef] [Google Scholar]

2. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 37: 13–25, 2010. doi:10.1016/j.nbd.2009.07.030. [PubMed] [CrossRef] [Google Scholar]

3. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7: 41–53, 2006. doi:10.1038/nrn1824. [PubMed] [CrossRef] [Google Scholar]

4. Absinta M, Ha S-K, Nair G, Sati P, Luciano NJ, Palisoc M, Louveau A, Zaghloul KA, Pittaluga S, Kipnis J, Reich DS. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. eLife 6: e29738, 2017. doi:10.7554/eLife.29738. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Afonso PV, Ozden S, Cumont M-C, Seilhean D, Cartier L, Rezaie P, Mason S, Lambert S, Huerre M, Gessain A, Couraud P-O, Pique C, Ceccaldi P-E, Romero IA. Alteration of blood-brain barrier integrity by retroviral infection. PLoS Pathog 4: e1000205, 2008. doi:10.1371/journal.ppat.1000205. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Ahmed SSSJ, Husain RSA, Kumar S, Ramakrishnan V. Association between MDR1 gene polymorphisms and Parkinson's disease in Asian and Caucasian populations: a meta-analysis. J Neurol Sci 368: 255–262, 2016. doi:10.1016/j.jns.2016.07.041. [PubMed] [CrossRef] [Google Scholar]

7. Akawi NA, Canpolat FE, White SM, Quilis-Esquerra J, Morales Sanchez M, Gamundi MJ, Mochida GH, Walsh CA, Ali BR, Al-Gazali L. Delineation of the clinical, molecular and cellular aspects of novel JAM3 mutations underlying the autosomal recessive hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts. Hum Mutat 34: 498–505, 2013. doi:10.1002/humu.22263. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Alakbarzade V, Hameed A, Quek DQY, Chioza BA, Baple EL, Cazenave-Gassiot A, Nguyen LN, Wenk MR, Ahmad AQ, Sreekantan-Nair A, Weedon MN, Rich P, Patton MA, Warner TT, Silver DL, Crosby AH. A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome. Nat Genet 47: 814–817, 2015. doi:10.1038/ng.3313. [PubMed] [CrossRef] [Google Scholar]

9. Alata W, Ye Y, St-Amour I, Vandal M, Calon F. Human apolipoprotein E ε4 expression impairs cerebral vascularization and blood-brain barrier function in mice. J Cereb Blood Flow Metab 35: 86–94, 2015. doi:10.1038/jcbfm.2014.172. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Al-Bachari S. MRI Assessment of Neurovascular Changes in Idiopathic Parkinson's disease (Thesis). Manchester, UK: Univ. of Manchester, 2016. [Google Scholar]

11. Al-Chalabi A, van den Berg LH, Veldink J. Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat Rev Neurol 13: 96–104, 2017. doi:10.1038/nrneurol.2016.182. [PubMed] [CrossRef] [Google Scholar]

12. Allport JR, Muller WA, Luscinskas FW. Monocytes induce reversible focal changes in vascular endothelial cadherin complex during transendothelial migration under flow. J Cell Biol 148: 203–216, 2000. doi:10.1083/jcb.148.1.203. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonnière L, Bernard M, van Horssen J, de Vries HE, Charron F, Prat A. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334: 1727–1731, 2011. doi:10.1126/science.1206936. [PubMed] [CrossRef] [Google Scholar]

14. Alvarez JI, Cayrol R, Prat A. Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta 1812: 252–264, 2011. doi:10.1016/j.bbadis.2010.06.017. [PubMed] [CrossRef] [Google Scholar]

15. Alvarez JI, Saint-Laurent O, Godschalk A, Terouz S, Briels C, Larouche S, Bourbonnière L, Larochelle C, Prat A. Focal disturbances in the blood-brain barrier are associated with formation of neuroinflammatory lesions. Neurobiol Dis 74: 14–24, 2015. doi:10.1016/j.nbd.2014.09.016. [PubMed] [CrossRef] [Google Scholar]

16. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29: 341–345, 2011. doi:10.1038/nbt.1807. [PubMed] [CrossRef] [Google Scholar]

17. Alzheimer's Association Alzheimer's disease facts and figures. J Alzheimers Assoc 2017: 13, 2017. [Google Scholar]

18. Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7: 603–615, 2011. doi:10.1038/nrneurol.2011.150. [PubMed] [CrossRef] [Google Scholar]

19. Anderson KD, Pan L, Yang XM, Hughes VC, Walls JR, Dominguez MG, Simmons MV, Burfeind P, Xue Y, Wei Y, Macdonald LE, Thurston G, Daly C, Lin HC, Economides AN, Valenzuela DM, Murphy AJ, Yancopoulos GD, Gale NW. Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. Proc Natl Acad Sci USA 108: 2807–2812, 2011. doi:10.1073/pnas.1019761108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Andjus PR, Bataveljić D, Vanhoutte G, Mitrecic D, Pizzolante F, Djogo N, Nicaise C, Gankam Kengne F, Gangitano C, Michetti F, van der Linden A, Pochet R, Bacić G. In vivo morphological changes in animal models of amyotrophic lateral sclerosis and Alzheimer's-like disease: MRI approach. Anat Rec (Hoboken) 292: 1882–1892, 2009. doi:10.1002/ar.20995. [PubMed] [CrossRef] [Google Scholar]

21. Andreone BJ, Chow BW, Tata A, Lacoste B, Ben-Zvi A, Bullock K, Deik AA, Ginty DD, Clish CB, Gu C. Blood-Brain Barrier Permeability Is Regulated by Lipid Transport-Dependent Suppression of Caveolae-Mediated Transcytosis. Neuron 94: 581–594.e5, 2017. doi:10.1016/j.neuron.2017.03.043. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Andreone BJ, Lacoste B, Gu C. Neuronal and vascular interactions. Annu Rev Neurosci 38: 25–46, 2015. doi:10.1146/annurev-neuro-071714-033835. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Apostolski S, Nikolić J, Bugarski-Prokopljević C, Miletić V, Pavlović S, Filipović S. Serum and CSF immunological findings in ALS. Acta Neurol Scand 83: 96–98, 1991. doi:10.1111/j.1600-0404.1991.tb04656.x. [PubMed] [CrossRef] [Google Scholar]

24. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG, Ferrara N, Sofroniew MV, John GR. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 122: 2454–2468, 2012. doi:10.1172/JCI60842. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Armstrong RA. Spatial correlations between beta-amyloid (Abeta) deposits and blood vessels in familial Alzheimer's disease. Folia Neuropathol 46: 241–248, 2008. [PubMed] [Google Scholar]

26. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res 97: 512–523, 2005. doi:10.1161/01.RES.0000182903.16652.d7. [PubMed] [CrossRef] [Google Scholar]

27. Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21: 193–215, 2011. doi:10.1016/j.devcel.2011.07.001. [PubMed] [CrossRef] [Google Scholar]

28. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C. Pericytes regulate the blood-brain barrier. Nature 468: 557–561, 2010. doi:10.1038/nature09522. [PubMed] [CrossRef] [Google Scholar]

29. Arvanitakis Z, Capuano AW, Leurgans SE, Bennett DA, Schneider JA. Relation of cerebral vessel disease to Alzheimer's disease dementia and cognitive function in elderly people: a cross-sectional study. Lancet Neurol 15: 934–943, 2016. doi:10.1016/S1474-4422(16)30029-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

30. Asgari M, de Zélicourt D, Kurtcuoglu V. Glymphatic solute transport does not require bulk flow. Sci Rep 6: 38635, 2016. doi:10.1038/srep38635. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Asgari N, Berg CT, Mørch MT, Khorooshi R, Owens T. Cerebrospinal fluid aquaporin-4-immunoglobulin G disrupts blood brain barrier. Ann Clin Transl Neurol 2: 857–863, 2015. doi:10.1002/acn3.221. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212: 991–999, 2015. doi:10.1084/jem.20142290. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. van Assema DME, Lubberink M, Bauer M, van der Flier WM, Schuit RC, Windhorst AD, Comans EFI, Hoetjes NJ, Tolboom N, Langer O, Müller M, Scheltens P, Lammertsma AA, van Berckel BNM. Blood-brain barrier P-glycoprotein function in Alzheimer's disease. Brain 135: 181–189, 2012. doi:10.1093/brain/awr298. [PubMed] [CrossRef] [Google Scholar]

34. Atwal JK, Chen Y, Chiu C, Mortensen DL, Meilandt WJ, Liu Y, Heise CE, Hoyte K, Luk W, Lu Y, Peng K, Wu P, Rouge L, Zhang Y, Lazarus RA, Scearce-Levie K, Wang W, Wu Y, Tessier-Lavigne M, Watts RJ. A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo. Sci Transl Med 3: 84ra43, 2011. doi:10.1126/scitranslmed.3002254. [PubMed] [CrossRef] [Google Scholar]

35. Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol 71: 1018–1039, 2011. doi:10.1002/dneu.20954. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

36. Bailey TL, Rivara CB, Rocher AB, Hof PR. The nature and effects of cortical microvascular pathology in aging and Alzheimer's disease. Neurol Res 26: 573–578, 2004. doi:10.1179/016164104225016272. [PubMed] [CrossRef] [Google Scholar]

37. Bakker ENTP, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AWJ, Weller RO, Carare RO. Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases. Cell Mol Neurobiol 36: 181–194, 2016. doi:10.1007/s10571-015-0273-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Balbuena P, Li W, Rzigalinski BA, Ehrich M. Malathion/oxon and lead acetate increase gene expression and protein levels of transient receptor potential canonical channel subunits TRPC1 and TRPC4 in rat endothelial cells of the blood-brain barrier. Int J Toxicol 31: 238–249, 2012. doi:10.1177/1091581812442688. [PubMed] [CrossRef] [Google Scholar]

39. Bales KR, Verina T, Cummins DJ, Du Y, Dodel RC, Saura J, Fishman CE, DeLong CA, Piccardo P, Petegnief V, Ghetti B, Paul SM. Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 96: 15233–15238, 1999. doi:10.1073/pnas.96.26.15233. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Baloyannis SJ, Baloyannis IS. The vascular factor in Alzheimer's disease: a study in Golgi technique and electron microscopy. J Neurol Sci 322: 117–121, 2012. doi:10.1016/j.jns.2012.07.010. [PubMed] [CrossRef] [Google Scholar]

41. Banks WA. Leptin transport across the blood-brain barrier: implications for the cause and treatment of obesity. Curr Pharm Des 7: 125–133, 2001. doi:10.2174/1381612013398310. [PubMed] [CrossRef] [Google Scholar]

42. Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 15: 275–292, 2016. doi:10.1038/nrd.2015.21. [PubMed] [CrossRef] [Google Scholar]

43. Barbagallo M, Dominguez LJ. Type 2 diabetes mellitus and Alzheimer's disease. World J Diabetes 5: 889–893, 2014. doi:10.4239/wjd.v5.i6.889. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Barcia C, Emborg ME, Hirsch EC, Herrero M-T. Blood vessels and parkinsonism. Front Biosci 9: 277–282, 2004. doi:10.2741/1145. [PubMed] [CrossRef] [Google Scholar]

45. Bardehle S, Rafalski VA, Akassoglou K. Breaking boundaries-coagulation and fibrinolysis at the neurovascular interface. Front Cell Neurosci 9: 354, 2015. doi:10.3389/fncel.2015.00354. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Barnes SR, Ng TSC, Montagne A, Law M, Zlokovic BV, Jacobs RE. Optimal acquisition and modeling parameters for accurate assessment of low Ktrans blood-brain barrier permeability using dynamic contrast-enhanced MRI. Magn Reson Med 75: 1967–1977, 2016. doi:10.1002/mrm.25793. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Barnes SR, Ng TSC, Santa-Maria N, Montagne A, Zlokovic BV, Jacobs RE. ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies. BMC Med Imaging 15: 19, 2015. doi:10.1186/s12880-015-0062-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Başkaya MK, Rao AM, Doğan A, Donaldson D, Dempsey RJ. The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 226: 33–36, 1997. doi:10.1016/S0304-3940(97)00239-5. [PubMed] [CrossRef] [Google Scholar]

49. Basun H, Bogdanovic N, Ingelsson M, Almkvist O, Näslund J, Axelman K, Bird TD, Nochlin D, Schellenberg GD, Wahlund L-O, Lannfelt L. Clinical and neuropathological features of the arctic APP gene mutation causing early-onset Alzheimer disease. Arch Neurol 65: 499–505, 2008. doi:10.1001/archneur.65.4.499. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Bataveljić D, Nikolić L, Milosević M, Todorović N, Andjus PR. Changes in the astrocytic aquaporin-4 and inwardly rectifying potassium channel expression in the brain of the amyotrophic lateral sclerosis SOD1(G93A) rat model. Glia 60: 1991–2003, 2012. doi:10.1002/glia.22414. [PubMed] [CrossRef] [Google Scholar]

51. Bataveljić D, Stamenković S, Bačić G, Andjus PR. Imaging cellular markers of neuroinflammation in the brain of the rat model of amyotrophic lateral sclerosis. Acta Physiol Hung 98: 27–31, 2011. doi:10.1556/APhysiol.98.2011.1.4. [PubMed] [CrossRef] [Google Scholar]

52. Bateman RJ, Aisen PS, De Strooper B, Fox NC, Lemere CA, Ringman JM, Salloway S, Sperling RA, Windisch M, Xiong C. Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of Alzheimer's disease. Alzheimers Res Ther 3: 1, 2011. doi:10.1186/alzrt59. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC; Dominantly Inherited Alzheimer Network . Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med 367: 795–804, 2012. doi:10.1056/NEJMoa1202753. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Baugh CM, Robbins CA, Stern RA, McKee AC. Current understanding of chronic traumatic encephalopathy. Curr Treat Options Neurol 16: 306, 2014. doi:10.1007/s11940-014-0306-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Beaufort N, Scharrer E, Kremmer E, Lux V, Ehrmann M, Huber R, Houlden H, Werring D, Haffner C, Dichgans M. Cerebral small vessel disease-related protease HtrA1 processes latent TGF-β binding protein 1 and facilitates TGF-β signaling. Proc Natl Acad Sci USA 111: 16496–16501, 2014. doi:10.1073/pnas.1418087111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Beckmann N, Gérard C, Abramowski D, Cannet C, Staufenbiel M. Noninvasive magnetic resonance imaging detection of cerebral amyloid angiopathy-related microvascular alterations using superparamagnetic iron oxide particles in APP transgenic mouse models of Alzheimer's disease: application to passive Abeta immunotherapy. J Neurosci 31: 1023–1031, 2011. doi:10.1523/JNEUROSCI.4936-10.2011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Bell RD, Deane R, Chow N, Long X, Sagare A, Singh I, Streb JW, Guo H, Rubio A, Van Nostrand W, Miano JM, Zlokovic BV. SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells. Nat Cell Biol 11: 143–153, 2009. doi:10.1038/ncb1819. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, Zlokovic BV. Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 27: 909–918, 2007. doi:10.1038/sj.jcbfm.9600419. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68: 409–427, 2010. doi:10.1016/j.neuron.2010.09.043. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, Holtzman DM, Betsholtz C, Armulik A, Sallstrom J, Berk BC, Zlokovic BV. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485: 512–516, 2012. doi:10.1038/nature11087. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Benzinger TLS, Blazey T, Jack CR Jr, Koeppe RA, Su Y, Xiong C, Raichle ME, Snyder AZ, Ances BM, Bateman RJ, Cairns NJ, Fagan AM, Goate A, Marcus DS, Aisen PS, Christensen JJ, Ercole L, Hornbeck RC, Farrar AM, Aldea P, Jasielec MS, Owen CJ, Xie X, Mayeux R, Brickman A, McDade E, Klunk W, Mathis CA, Ringman J, Thompson PM, Ghetti B, Saykin AJ, Sperling RA, Johnson KA, Salloway S, Correia S, Schofield PR, Masters CL, Rowe C, Villemagne VL, Martins R, Ourselin S, Rossor MN, Fox NC, Cash DM, Weiner MW, Holtzman DM, Buckles VD, Moulder K, Morris JC. Regional variability of imaging biomarkers in autosomal dominant Alzheimer's disease. Proc Natl Acad Sci USA 110: E4502–E4509, 2013. doi:10.1073/pnas.1317918110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509: 507–511, 2014. doi:10.1038/nature13324. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Betsholtz C. Physiology: double function at the blood-brain barrier. Nature 509: 432–433, 2014. doi:10.1038/nature13339. [PubMed] [CrossRef] [Google Scholar]

64. Bien-Ly N, Andrews-Zwilling Y, Xu Q, Bernardo A, Wang C, Huang Y. C-terminal-truncated apolipoprotein (apo) E4 inefficiently clears amyloid-beta (Abeta) and acts in concert with Abeta to elicit neuronal and behavioral deficits in mice. Proc Natl Acad Sci USA 108: 4236–4241, 2011. doi:10.1073/pnas.1018381108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Biesecker KR, Srienc AI, Shimoda AM, Agarwal A, Bergles DE, Kofuji P, Newman EA. Glial Cell Calcium Signaling Mediates Capillary Regulation of Blood Flow in the Retina. J Neurosci 36: 9435–9445, 2016. doi:10.1523/JNEUROSCI.1782-16.2016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Blair LJ, Frauen HD, Zhang B, Nordhues BA, Bijan S, Lin Y-C, Zamudio F, Hernandez LD, Sabbagh JJ, Selenica M-LB, Dickey CA. Tau depletion prevents progressive blood-brain barrier damage in a mouse model of tauopathy. Acta Neuropathol Commun 3: 8, 2015. doi:10.1186/s40478-015-0186-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Blennow K, Wallin A, Fredman P, Karlsson I, Gottfries CG, Svennerholm L. Blood-brain barrier disturbance in patients with Alzheimer's disease is related to vascular factors. Acta Neurol Scand 81: 323–326, 1990. doi:10.1111/j.1600-0404.1990.tb01563.x. [PubMed] [CrossRef] [Google Scholar]

68. Blennow K, Wallin A, Uhlemann C, Gottfries CG. White-matter lesions on CT in Alzheimer patients: relation to clinical symptomatology and vascular factors. Acta Neurol Scand 83: 187–193, 1991. doi:10.1111/j.1600-0404.1991.tb04675.x. [PubMed] [CrossRef] [Google Scholar]

69. Boado RJ, Hui EK-W, Lu JZ, Pardridge WM. Re-engineering iduronate 2-sulfatase for penetration of the blood-brain barrier via transport on the insulin receptor. Mol Genet Metab 111: S27, 2014. doi:10.1016/j.ymgme.2013.12.043. [CrossRef] [Google Scholar]

70. Boado RJ, Pardridge WM. Brain and Organ Uptake in the Rhesus Monkey in Vivo of Recombinant Iduronidase Compared to an Insulin Receptor Antibody-Iduronidase Fusion Protein. Mol Pharm 14: 1271–1277, 2017. doi:10.1021/acs.molpharmaceut.6b01166. [PubMed] [CrossRef] [Google Scholar]

71. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm Res 33: 2373–2387, 2016. doi:10.1007/s11095-016-1958-5. [PubMed] [CrossRef] [Google Scholar]

72. Bondjers C, He L, Takemoto M, Norlin J, Asker N, Hellström M, Lindahl P, Betsholtz C. Microarray analysis of blood microvessels from PDGF-B and PDGF-Rbeta mutant mice identifies novel markers for brain pericytes. FASEB J 20: 1703–1705, 2006. doi:10.1096/fj.05-4944fje. [PubMed] [CrossRef] [Google Scholar]

73. Boulay A-C, Mazeraud A, Cisternino S, Saubaméa B, Mailly P, Jourdren L, Blugeon C, Mignon V, Smirnova M, Cavallo A, Ezan P, Avé P, Dingli F, Loew D, Vieira P, Chrétien F, Cohen-Salmon M. Immune quiescence of the brain is set by astroglial connexin 43. J Neurosci 35: 4427–4439, 2015. doi:10.1523/JNEUROSCI.2575-14.2015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Bowman GL, Kaye JA, Quinn JF. Dyslipidemia and blood-brain barrier integrity in Alzheimer's disease. Curr Gerontol Geriatr Res 2012: 184042, 2012. doi:10.1155/2012/184042. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Bradbury MW, Cserr HF, Westrop RJ. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol Renal Physiol 240: F329–F336, 1981. [PubMed] [Google Scholar]

76. Braganza O, Bedner P, Hüttmann K, von Staden E, Friedman A, Seifert G, Steinhäuser C. Albumin is taken up by hippocampal NG2 cells and astrocytes and decreases gap junction coupling. Epilepsia 53: 1898–1906, 2012. doi:10.1111/j.1528-1167.2012.03665.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, Korecka A, Bakocevic N, Ng LG, Kundu P, Gulyás B, Halldin C, Hultenby K, Nilsson H, Hebert H, Volpe BT, Diamond B, Pettersson S. The gut microbiota influences blood-brain barrier permeability in mice [Correction in Sci Transl Med 6: 266er7, 2014.]. Sci Transl Med 6: 263ra158, 2014. doi:10.1126/scitranslmed.3009759. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Bray N. Biologics: transferrin' bispecific antibodies across the blood-brain barrier. Nat Rev Drug Discov 14: 14–15, 2015. doi:10.1038/nrd4522. [PubMed] [CrossRef] [Google Scholar]

79. Brettschneider J, Petzold A, Süssmuth SD, Ludolph AC, Tumani H. Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 66: 852–856, 2006. doi:10.1212/01.wnl.0000203120.85850.54. [PubMed] [CrossRef] [Google Scholar]

80. Brinton R, Swanson H, Irwin R. Allopregnanolone promotes cholesterol and amyloid-beta clearance mechanisms: assessment of a regenerative therapeutic for Alzheimer's disease. Alzheimers Dement 12: 1024–1025, 2016. doi:10.1016/j.jalz.2016.06.2115. [CrossRef] [Google Scholar]

81. Briscoe J, Thérond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14: 416–429, 2013. doi:10.1038/nrm3598. [PubMed] [CrossRef] [Google Scholar]

82. Bruinsma IB, Wilhelmus MMM, Kox M, Veerhuis R, de Waal RMW, Verbeek MM. Apolipoprotein E protects cultured pericytes and astrocytes from D-Abeta(1-40)-mediated cell death. Brain Res 1315: 169–180, 2010. doi:10.1016/j.brainres.2009.12.039. [PubMed] [CrossRef] [Google Scholar]

83. Brundel M, Heringa SM, de Bresser J, Koek HL, Zwanenburg JJM, Jaap Kappelle L, Luijten PR, Biessels GJ. High prevalence of cerebral microbleeds at 7Tesla MRI in patients with early Alzheimer's disease. J Alzheimers Dis 31: 259–263, 2012. doi:10.3233/JAD-2012-120364. [PubMed] [CrossRef] [Google Scholar]

84. Burgess A, Hynynen K. Microbubble-assisted ultrasound for drug delivery in the brain and central nervous system. In: Therapeutic Ultrasound, edited by Escoffre J-M, Bouakaz A. New York: Springer International, 2016, p. 293–308. doi:10.1007/978-3-319-22536-4_16. [PubMed] [CrossRef] [Google Scholar]

85. Cacciottolo M, Christensen A, Moser A, Liu J, Pike CJ, Smith C, LaDu MJ, Sullivan PM, Morgan TE, Dolzhenko E, Charidimou A, Wahlund L-O, Wiberg MK, Shams S, Chiang GC-Y, Finch CE; Alzheimer's Disease Neuroimaging Initiative . The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer's disease of humans and mice. Neurobiol Aging 37: 47–57, 2016. doi:10.1016/j.neurobiolaging.2015.10.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Calabria AR, Shusta EV. A genomic comparison of in vivo and in vitro brain microvascular endothelial cells. J Cereb Blood Flow Metab 28: 135–148, 2008. doi:10.1038/sj.jcbfm.9600518. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Calderón-Garcidueñas L, Mora-Tiscareño A, Franco-Lira M, Zhu H, Lu Z, Solorio E, Torres-Jardón R, D'Angiulli A. Decreases in Short Term Memory, IQ, and Altered Brain Metabolic Ratios in Urban Apolipoprotein ε4 Children Exposed to Air Pollution. J Alzheimers Dis 45: 757–770, 2015. doi:10.3233/JAD-142685. [PubMed] [CrossRef] [Google Scholar]

88. Calderón-Garcidueñas L, Villarreal-Ríos R. Living close to heavy traffic roads, air pollution, and dementia. Lancet 389: 675–677, 2017. doi:10.1016/S0140-6736(16)32596-X. [PubMed] [CrossRef] [Google Scholar]

89. Calderón-Garcidueñas L, Vojdani A, Blaurock-Busch E, Busch Y, Friedle A, Franco-Lira M, Sarathi-Mukherjee P, Martínez-Aguirre X, Park S-B, Torres-Jardón R, D'Angiulli A. Air pollution and children: neural and tight junction antibodies and combustion metals, the role of barrier breakdown and brain immunity in neurodegeneration. J Alzheimers Dis 43: 1039–1058, 2015. doi:10.3233/JAD-141365. [PubMed] [CrossRef] [Google Scholar]

90. Calero M, Tokuda T, Rostagno A, Kumar A, Zlokovic B, Frangione B, Ghiso J. Functional and structural properties of lipid-associated apolipoprotein J (clusterin). Biochem J 344: 375–383, 1999. doi:10.1042/bj3440375. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Canevelli M, Piscopo P, Talarico G, Vanacore N, Blasimme A, Crestini A, Tosto G, Troili F, Lenzi GL, Confaloni A, Bruno G. Familial Alzheimer's disease sustained by presenilin 2 mutations: systematic review of literature and genotype-phenotype correlation. Neurosci Biobehav Rev 42: 170–179, 2014. doi:10.1016/j.neubiorev.2014.02.010. [PubMed] [CrossRef] [Google Scholar]

92. Capri Y, Friesema ECH, Kersseboom S, Touraine R, Monnier A, Eymard-Pierre E, Des Portes V, De Michele G, Brady AF, Boespflug-Tanguy O, Visser TJ, Vaurs-Barriere C. Relevance of different cellular models in determining the effects of mutations on SLC16A2/MCT8 thyroid hormone transporter function and genotype-phenotype correlation. Hum Mutat 34: 1018–1025, 2013. doi:10.1002/humu.22331. [PubMed] [CrossRef] [Google Scholar]

93. Carmeliet P, Tessier-Lavigne M. Common mechanisms of nerve and blood vessel wiring. Nature 436: 193–200, 2005. doi:10.1038/nature03875. [PubMed] [CrossRef] [Google Scholar]

94. Carrasquillo MM, Belbin O, Hunter TA, Ma L, Bisceglio GD, Zou F, Crook JE, Pankratz VS, Dickson DW, Graff-Radford NR, Petersen RC, Morgan K, Younkin SG. Replication of CLU, CR1, and PICALM associations with Alzheimer disease. Arch Neurol 67: 961–964, 2010. doi:10.1001/archneurol.2010.147. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Carvey PM, Zhao CH, Hendey B, Lum H, Trachtenberg J, Desai BS, Snyder J, Zhu YG, Ling ZD. 6-Hydroxydopamine-induced alterations in blood-brain barrier permeability. Eur J Neurosci 22: 1158–1168, 2005. doi:10.1111/j.1460-9568.2005.04281.x. [PubMed] [CrossRef] [Google Scholar]

96. Casey CS, Atagi Y, Yamazaki Y, Shinohara M, Tachibana M, Fu Y, Bu G, Kanekiyo T. Apolipoprotein E Inhibits Cerebrovascular Pericyte Mobility through a RhoA Protein-mediated Pathway. J Biol Chem 290: 14208–14217, 2015. doi:10.1074/jbc.M114.625251. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Cass CE, Young JD, Baldwin SA. Recent advances in the molecular biology of nucleoside transporters of mammalian cells. Biochem Cell Biol 76: 761–770, 1998. doi:10.1139/o98-095. [PubMed] [CrossRef] [Google Scholar]

98. Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC, Mawuenyega KG, Cruchaga C, Goate AM, Bales KR, Paul SM, Bateman RJ, Holtzman DM. Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med 3: 89ra57, 2011. doi:10.1126/scitranslmed.3002156. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Castillo-Gomez E, Kästner A, Steiner J, Schneider A, Hettling B, Poggi G, Ostehr K, Uhr M, Asif AR, Matzke M, Schmidt U, Pfander V, Hammer C, Schulz TF, Binder L, Stöcker W, Weber F, Ehrenreich H. The brain as immunoprecipitator of serum autoantibodies against N-Methyl-d-aspartate receptor subunit NR1. Ann Neurol 79: 144–151, 2016. doi:10.1002/ana.24545. [PubMed] [CrossRef] [Google Scholar]

100. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser M-G. Cadasil. Lancet Neurol 8: 643–653, 2009. doi:10.1016/S1474-4422(09)70127-9. [PubMed] [CrossRef] [Google Scholar]

101. Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu W-L, Sánchez-Guardado L, Lois C, Mazmanian SK, Deverman BE, Gradinaru V. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 20: 1172–1179, 2017. doi:10.1038/nn.4593. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Chang J, Mancuso MR, Maier C, Liang X, Yuki K, Yang L, Kwong JW, Wang J, Rao V, Vallon M, Kosinski C, Zhang JJH, Mah AT, Xu L, Li L, Gholamin S, Reyes TF, Li R, Kuhnert F, Han X, Yuan J, Chiou S-H, Brettman AD, Daly L, Corney DC, Cheshier SH, Shortliffe LD, Wu X, Snyder M, Chan P, Giffard RG, Chang HY, Andreasson K, Kuo CJ. Gpr124 is essential for blood-brain barrier integrity in central nervous system disease. Nat Med 23: 450–460, 2017. doi:10.1038/nm.4309. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

103. Chapman CD, Frey WH II, Craft S, Danielyan L, Hallschmid M, Schiöth HB, Benedict C. Intranasal treatment of central nervous system dysfunction in humans. Pharm Res 30: 2475–2484, 2013. doi:10.1007/s11095-012-0915-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Chávez-Gutiérrez L, Bammens L, Benilova I, Vandersteen A, Benurwar M, Borgers M, Lismont S, Zhou L, Van Cleynenbreugel S, Esselmann H, Wiltfang J, Serneels L, Karran E, Gijsen H, Schymkowitz J, Rousseau F, Broersen K, De Strooper B. The mechanism of γ-secretase dysfunction in familial Alzheimer disease. EMBO J 31: 2261–2274, 2012. doi:10.1038/emboj.2012.79. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EMC. A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J Am Heart Assoc 3: e000787, 2014. doi:10.1161/JAHA.114.000787. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Chen H, Konofagou EE. The size of blood-brain barrier opening induced by focused ultrasound is dictated by the acoustic pressure. J Cereb Blood Flow Metab 34: 1197–1204, 2014. doi:10.1038/jcbfm.2014.71. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, Corada M, Dejana E, Zhou B, Adams RH. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun 7: 12422, 2016. doi:10.1038/ncomms12422. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Chen X, Lan X, Roche I, Liu R, Geiger JD. Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum. J Neurochem 107: 1147–1157, 2008. doi:10.1111/j.1471-4159.2008.05697.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

109. Chen Z-L, Revenko AS, Singh P, MacLeod AR, Norris EH, Strickland S. Depletion of coagulation factor XII ameliorates brain pathology and cognitive impairment in Alzheimer disease mice. Blood 129: 2547–2556, 2017. doi:10.1182/blood-2016-11-753202. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J 42: 484–491, 2012. doi:10.1111/j.1445-5994.2012.02758.x. [PubMed] [CrossRef] [Google Scholar]

111. Cho C, Smallwood PM, Nathans J. Reck and Gpr124 Are Essential Receptor Cofactors for Wnt7a/Wnt7b-Specific Signaling in Mammalian CNS Angiogenesis and Blood-Brain Barrier Regulation. Neuron 95: 1056–1073.e5, 2017. doi:10.1016/j.neuron.2017.07.031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Choudhary M, Naczki C, Chen W, Barlow KD, Case LD, Metheny-Barlow LJ. Tumor-induced loss of mural Connexin 43 gap junction activity promotes endothelial proliferation. BMC Cancer 15: 427, 2015. doi:10.1186/s12885-015-1420-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Chung YC, Kim Y-S, Bok E, Yune TY, Maeng S, Jin BK. MMP-3 contributes to nigrostriatal dopaminergic neuronal loss, BBB damage, and neuroinflammation in an MPTP mouse model of Parkinson's disease. Mediators Inflamm 2013: 370526, 2013. doi:10.1155/2013/370526. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Cicchetti F, Lacroix S, Cisbani G, Vallières N, Saint-Pierre M, St-Amour I, Tolouei R, Skepper JN, Hauser RA, Mantovani D, Barker RA, Freeman TB. Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann Neurol 76: 31–42, 2014. doi:10.1002/ana.24174. [PubMed] [CrossRef] [Google Scholar]

115. Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, Jiang H, Prior JL, Sagare A, Bales KR, Paul SM, Zlokovic BV, Piwnica-Worms D, Holtzman DM. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 115: 3285–3290, 2005. doi:10.1172/JCI25247. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Coatti GC, Frangini M, Valadares MC, Gomes JP, Lima NO, Cavaçana N, Assoni AF, Pelatti MV, Birbrair A, de Lima ACP, Singer JM, Rocha FMM, Da Silva GL, Mantovani MS, Macedo-Souza LI, Ferrari MFR, Zatz M. Pericytes extend survival of ALS SOD1 mice and induce the expression of antioxidant enzymes in the murine model and in IPSCs derived neuronal cells from an ALS patient. Stem Cell Rev 13: 686–698, 2017. doi:10.1007/s12015-017-9752-2. [PubMed] [CrossRef] [Google Scholar]

117. Cohen DM, Patel CB, Ahobila-Vajjula P, Sundberg LM, Chacko T, Liu S-J, Narayana PA. Blood-spinal cord barrier permeability in experimental spinal cord injury: dynamic contrast-enhanced MRI. NMR Biomed 22: 332–341, 2009. doi:10.1002/nbm.1343. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Conejero-Goldberg C, Gomar JJ, Bobes-Bascaran T, Hyde TM, Kleinman JE, Herman MM, Chen S, Davies P, Goldberg TE. APOE2 enhances neuroprotection against Alzheimer's disease through multiple molecular mechanisms. Mol Psychiatry 19: 1243–1250, 2014. doi:10.1038/mp.2013.194. [PubMed] [CrossRef] [Google Scholar]

119. Corneveaux JJ, Myers AJ, Allen AN, Pruzin JJ, Ramirez M, Engel A, Nalls MA, Chen K, Lee W, Chewning K, Villa SE, Meechoovet HB, Gerber JD, Frost D, Benson HL, O'Reilly S, Chibnik LB, Shulman JM, Singleton AB, Craig DW, Van Keuren-Jensen KR, Dunckley T, Bennett DA, De Jager PL, Heward C, Hardy J, Reiman EM, Huentelman MJ. Association of CR1, CLU and PICALM with Alzheimer's disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet 19: 3295–3301, 2010. doi:10.1093/hmg/ddq221. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Cortes-Canteli M, Paul J, Norris EH, Bronstein R, Ahn HJ, Zamolodchikov D, Bhuvanendran S, Fenz KM, Strickland S. Fibrinogen and beta-amyloid association alters thrombosis and fibrinolysis: a possible contributing factor to Alzheimer's disease. Neuron 66: 695–709, 2010. doi:10.1016/j.neuron.2010.05.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Cramer SP, Larsson HBW. Accurate determination of blood-brain barrier permeability using dynamic contrast-enhanced T1-weighted MRI: a simulation and in vivo study on healthy subjects and multiple sclerosis patients. J Cereb Blood Flow Metab 34: 1655–1665, 2014. doi:10.1038/jcbfm.2014.126. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Cramer SP, Modvig S, Simonsen HJ, Frederiksen JL, Larsson HBW. Permeability of the blood-brain barrier predicts conversion from optic neuritis to multiple sclerosis. Brain 138: 2571–2583, 2015. doi:10.1093/brain/awv203. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Cramer SP, Simonsen H, Frederiksen JL, Rostrup E, Larsson HBW. Abnormal blood-brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI. Neuroimage Clin 4: 182–189, 2014. doi:10.1016/j.nicl.2013.12.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Crane RK, Sols A. The non-competitive inhibition of brain hexokinase by glucose-6-phosphate and related compounds. J Biol Chem 210: 597–606, 1954. [PubMed] [Google Scholar]

125. Cullen KM, Kócsi Z, Stone J. Pericapillary haem-rich deposits: evidence for microhaemorrhages in aging human cerebral cortex. J Cereb Blood Flow Metab 25: 1656–1667, 2005. doi:10.1038/sj.jcbfm.9600155. [PubMed] [CrossRef] [Google Scholar]

126. Cullen M, Elzarrad MK, Seaman S, Zudaire E, Stevens J, Yang MY, Li X, Chaudhary A, Xu L, Hilton MB, Logsdon D, Hsiao E, Stein EV, Cuttitta F, Haines DC, Nagashima K, Tessarollo L, St Croix B. GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier. Proc Natl Acad Sci USA 108: 5759–5764, 2011. doi:10.1073/pnas.1017192108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. [Correction in Proc Natl Acad Sci USA 106: 6422, 2009.] Proc Natl Acad Sci USA 106: 641–646, 2009. doi:10.1073/pnas.0805165106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol 7: a020412, 2015. doi:10.1101/cshperspect.a020412. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA. The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS One 5: e13741, 2010. doi:10.1371/journal.pone.0013741. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468: 562–566, 2010. doi:10.1038/nature09513. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Daniels BP, Klein RS. Knocking on Closed Doors: Host Interferons Dynamically Regulate Blood-Brain Barrier Function during Viral Infections of the Central Nervous System. PLoS Pathog 11: e1005096, 2015. doi:10.1371/journal.ppat.1005096. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

132. Davalos D, Ryu JK, Merlini M, Baeten KM, Le Moan N, Petersen MA, Deerinck TJ, Smirnoff DS, Bedard C, Hakozaki H, Gonias Murray S, Ling JB, Lassmann H, Degen JL, Ellisman MH, Akassoglou K. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun 3: 1227, 2012. doi:10.1038/ncomms2230. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt AM, Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, Kindy M, Stern D, Zlokovic B. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9: 907–913, 2003. doi:10.1038/nm890. [PubMed] [CrossRef] [Google Scholar]

135. Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, Holtzman DM, Zlokovic BV. apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. J Clin Invest 118: 4002–4013, 2008. doi:10.1172/JCI36663. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S, Paquette N, Deane RJ, Thiyagarajan M, Zarcone T, Fritz G, Friedman AE, Miller BL, Zlokovic BV. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 122: 1377–1392, 2012. doi:10.1172/JCI58642. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, Xu F, Parisi M, LaRue B, Hu HW, Spijkers P, Guo H, Song X, Lenting PJ, Van Nostrand WE, Zlokovic BV. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron 43: 333–344, 2004. doi:10.1016/j.neuron.2004.07.017. [PubMed] [CrossRef] [Google Scholar]

138. Dejana E. The role of wnt signaling in physiological and pathological angiogenesis. Circ Res 107: 943–952, 2010. doi:10.1161/CIRCRESAHA.110.223750. [PubMed] [CrossRef] [Google Scholar]

139. Dejana E, Vestweber D. The role of VE-cadherin in vascular morphogenesis and permeability control. Prog Mol Biol Transl Sci 116: 119–144, 2013. doi:10.1016/B978-0-12-394311-8.00006-6. [PubMed] [CrossRef] [Google Scholar]

140. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung G-YR, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72: 245–256, 2011. doi:10.1016/j.neuron.2011.09.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N. Crystal structure of the human glucose transporter GLUT1. Nature 510: 121–125, 2014. doi:10.1038/nature13306. [PubMed] [CrossRef] [Google Scholar]

142. Deo AK, Borson S, Link JM, Domino K, Eary JF, Ke B, Richards TL, Mankoff DA, Minoshima S, O'Sullivan F, Eyal S, Hsiao P, Maravilla K, Unadkat JD. Activity of P-Glycoprotein, a β-Amyloid Transporter at the Blood-Brain Barrier, Is Compromised in Patients with Mild Alzheimer Disease. J Nucl Med 55: 1106–1111, 2014. doi:10.2967/jnumed.113.130161. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Dermaut B, Kumar-Singh S, De Jonghe C, Cruts M, Löfgren A, Lübke U, Cras P, Dom R, De Deyn PP, Martin JJ, Van Broeckhoven C. Cerebral amyloid angiopathy is a pathogenic lesion in Alzheimer's disease due to a novel presenilin 1 mutation. Brain 124: 2383–2392, 2001. doi:10.1093/brain/124.12.2383. [PubMed] [CrossRef] [Google Scholar]

144. Desai Bradaric B, Patel A, Schneider JA, Carvey PM, Hendey B. Evidence for angiogenesis in Parkinson's disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm (Vienna) 119: 59–71, 2012. doi:10.1007/s00702-011-0684-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

145. Deshpande T, Li T, Herde MK, Becker A, Vatter H, Schwarz MK, Henneberger C, Steinhäuser C, Bedner P. Subcellular reorganization and altered phosphorylation of the astrocytic gap junction protein connexin43 in human and experimental temporal lobe epilepsy. Glia 65: 1809–1820, 2017. doi:10.1002/glia.23196. [PubMed] [CrossRef] [Google Scholar]

146. Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A, Wu W-L, Yang B, Huber N, Pasca SP, Gradinaru V. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 34: 204–209, 2016. doi:10.1038/nbt.3440. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Di Cataldo V, Géloën A, Langlois J-B, Chauveau F, Thézé B, Hubert V, Wiart M, Chirico EN, Rieusset J, Vidal H, Pialoux V, Canet-Soulas E. Exercise Does Not Protect against Peripheral and Central Effects of a High Cholesterol Diet Given Ad libitum in Old ApoE-/- Mice. Front Physiol 7: 453, 2016. doi:10.3389/fphys.2016.00453. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Di Pardo A, Carrizzo A, Damato A, Castaldo S, Amico E, Capocci L, Ambrosio M, Pompeo F, De Sanctis C, Spinelli CC, Puca AA, Remondelli P, Maglione V, Vecchione C. Motor phenotype is not associated with vascular dysfunction in symptomatic Huntington's disease transgenic R6/2 (160 CAG) mice. Sci Rep 7: 42797, 2017. doi:10.1038/srep42797. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

149. Doherty CP, O'Keefe E, Wallace E, Loftus T, Keaney J, Kealy J, Humphries MM, Molloy MG, Meaney JF, Farrell M, Campbell M. Blood-Brain Barrier Dysfunction as a Hallmark Pathology in Chronic Traumatic Encephalopathy. J Neuropathol Exp Neurol 75: 656–662, 2016. doi:10.1093/jnen/nlw036. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

150. Dolgin E. Spinal muscular atrophy approval boosts antisense drugs. Nat Biotechnol 35: 99–100, 2017. doi:10.1038/nbt0217-99. [PubMed] [CrossRef] [Google Scholar]

151. Domnitz SB, Robbins EM, Hoang AW, Garcia-Alloza M, Hyman BT, Rebeck GW, Greenberg SM, Bacskai BJ, Frosch MP. Progression of cerebral amyloid angiopathy in transgenic mouse models of Alzheimer disease. J Neuropathol Exp Neurol 64: 588–594, 2005. doi:10.1097/01.jnen.0000171644.00180.fc. [PubMed] [CrossRef] [Google Scholar]

152. Donahue JE, Flaherty SL, Johanson CE, Duncan JA III, Silverberg GD, Miller MC, Tavares R, Yang W, Wu Q, Sabo E, Hovanesian V, Stopa EG. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol 112: 405–415, 2006. doi:10.1007/s00401-006-0115-3. [PubMed] [CrossRef] [Google Scholar]

153. Donnelly CJ, Zhang P-W, Pham JT, Haeusler AR, Mistry NA, Vidensky S, Daley EL, Poth EM, Hoover B, Fines DM, Maragakis N, Tienari PJ, Petrucelli L, Traynor BJ, Wang J, Rigo F, Bennett CF, Blackshaw S, Sattler R, Rothstein JD. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention [Correction in Neuron 80: 1102, 2013.]. Neuron 80: 415–428, 2013. doi:10.1016/j.neuron.2013.10.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Donnenfeld H, Kascsak RJ, Bartfeld H. Deposits of IgG and C3 in the spinal cord and motor cortex of ALS patients. J Neuroimmunol 6: 51–57, 1984. doi:10.1016/0165-5728(84)90042-0. [PubMed] [CrossRef] [Google Scholar]

155. Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagacé M, Kuan W-L, Saint-Pierre M, Dury RJ, Alata W, St-Amour I, Mason SL, Calon F, Lacroix S, Gowland PA, Francis ST, Barker RA, Cicchetti F. Cerebrovascular and blood-brain barrier impairments in Huntington's disease: Potential implications for its pathophysiology. Ann Neurol 78: 160–177, 2015. doi:10.1002/ana.24406. [PubMed] [CrossRef] [Google Scholar]

156. Dumitrescu AM, Liao X-H, Best TB, Brockmann K, Refetoff S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet 74: 168–175, 2004. doi:10.1086/380999. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Dunckley T, Huentelman MJ, Craig DW, Pearson JV, Szelinger S, Joshipura K, Halperin RF, Stamper C, Jensen KR, Letizia D, Hesterlee SE, Pestronk A, Levine T, Bertorini T, Graves MC, Mozaffar T, Jackson CE, Bosch P, McVey A, Dick A, Barohn R, Lomen-Hoerth C, Rosenfeld J, O'connor DT, Zhang K, Crook R, Ryberg H, Hutton M, Katz J, Simpson EP, Mitsumoto H, Bowser R, Miller RG, Appel SH, Stephan DA. Whole-genome analysis of sporadic amyotrophic lateral sclerosis. N Engl J Med 357: 775–788, 2007. doi:10.1056/NEJMoa070174. [PubMed] [CrossRef] [Google Scholar]

158. Eichmann A, Thomas J-L. Molecular parallels between neural and vascular development. Cold Spring Harb Perspect Med 3: a006551, 2013. doi:10.1101/cshperspect.a006551. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Elfeber K, Köhler A, Lutzenburg M, Osswald C, Galla H-J, Witte OW, Koepsell H. Localization of the Na+-d-glucose cotransporter SGLT1 in the blood-brain barrier. Histochem Cell Biol 121: 201–207, 2004. doi:10.1007/s00418-004-0633-9. [PubMed] [CrossRef] [Google Scholar]

160. Engelhardt B, Carare RO, Bechmann I, Flügel A, Laman JD, Weller RO. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol 132: 317–338, 2016. doi:10.1007/s00401-016-1606-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

161. Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol 33: 579–589, 2012. doi:10.1016/j.it.2012.07.004. [PubMed] [CrossRef] [Google Scholar]

162. Engelhardt B, Vajkoczy P, Weller RO. The movers and shapers in immune privilege of the CNS. Nat Immunol 18: 123–131, 2017. doi:10.1038/ni.3666. [PubMed] [CrossRef] [Google Scholar]

163. Engelhardt JI, Appel SH. IgG reactivity in the spinal cord and motor cortex in amyotrophic lateral sclerosis. Arch Neurol 47: 1210–1216, 1990. doi:10.1001/archneur.1990.00530110068019. [PubMed] [CrossRef] [Google Scholar]

164. Engelhardt JI, Tajti J, Appel SH. Lymphocytic infiltrates in the spinal cord in amyotrophic lateral sclerosis. Arch Neurol 50: 30–36, 1993. doi:10.1001/archneur.1993.00540010026013. [PubMed] [CrossRef] [Google Scholar]

165. Estin ML, Thompson SB, Traxinger B, Fisher MH, Friedman RS, Jacobelli J. Ena/VASP proteins regulate activated T-cell trafficking by promoting diapedesis during transendothelial migration. Proc Natl Acad Sci USA 114: E2901–E2910, 2017. doi:10.1073/pnas.1701886114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Evans MC, Serres S, Khrapitchev AA, Stolp HB, Anthony DC, Talbot K, Turner MR, Sibson NR. T2-weighted MRI detects presymptomatic pathology in the SOD1 mouse model of ALS. J Cereb Blood Flow Metab 34: 785–793, 2014. doi:10.1038/jcbfm.2014.19. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

167. Ezan P, André P, Cisternino S, Saubaméa B, Boulay A-C, Doutremer S, Thomas M-A, Quenech'du N, Giaume C, Cohen-Salmon M. Deletion of astroglial connexins weakens the blood-brain barrier. J Cereb Blood Flow Metab 32: 1457–1467, 2012. doi:10.1038/jcbfm.2012.45. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Fainardi E, Castellazzi M, Bellini T, Manfrinato MC, Baldi E, Casetta I, Paolino E, Granieri E, Dallocchio F. Cerebrospinal fluid and serum levels and intrathecal production of active matrix metalloproteinase-9 (MMP-9) as markers of disease activity in patients with multiple sclerosis. Mult Scler 12: 294–301, 2006. doi:10.1191/135248506ms1274oa. [PubMed] [CrossRef] [Google Scholar]

169. Faraco G, Park L, Zhou P, Luo W, Paul SM, Anrather J, Iadecola C. Hypertension enhances Aβ-induced neurovascular dysfunction, promotes β-secretase activity, and leads to amyloidogenic processing of APP. J Cereb Blood Flow Metab 36: 241–252, 2016. doi:10.1038/jcbfm.2015.79. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

170. Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog Neurobiol 64: 575–611, 2001. doi:10.1016/S0301-0082(00)00068-X. [PubMed] [CrossRef] [Google Scholar]

171. Farrell CL, Pardridge WM. Blood-brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: an electron microscopic immunogold study. Proc Natl Acad Sci USA 88: 5779–5783, 1991. doi:10.1073/pnas.88.13.5779. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

172. Fernandez MA, Klutkowski JA, Freret T, Wolfe MS. Alzheimer presenilin-1 mutations dramatically reduce trimming of long amyloid β-peptides (Aβ) by γ-secretase to increase 42-to-40-residue Aβ. J Biol Chem 289: 31043–31052, 2014. doi:10.1074/jbc.M114.581165. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

173. Fernández-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc Natl Acad Sci USA 107: 22290–22295, 2010. doi:10.1073/pnas.1011321108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

174. Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7: 616–630, 2011. doi:10.1038/nrneurol.2011.152. [PubMed] [CrossRef] [Google Scholar]

175. Fiala M, Liu QN, Sayre J, Pop V, Brahmandam V, Graves MC, Vinters HV. Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer's disease brain and damage the blood-brain barrier. Eur J Clin Invest 32: 360–371, 2002. doi:10.1046/j.1365-2362.2002.00994.x. [PubMed] [CrossRef] [Google Scholar]

176. Filippi M, Rocca MA, Martino G, Horsfield MA, Comi G. Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43: 809–814, 1998. doi:10.1002/ana.410430616. [PubMed] [CrossRef] [Google Scholar]

177. Filley CM, Rollins YD, Anderson CA, Arciniegas DB, Howard KL, Murrell JR, Boyer PJ, Kleinschmidt-DeMasters BK, Ghetti B. The genetics of very early onset Alzheimer disease. Cogn Behav Neurol 20: 149–156, 2007. doi:10.1097/WNN.0b013e318145a8c8. [PubMed] [CrossRef] [Google Scholar]

178. Fischer A, Zalvide J, Faurobert E, Albiges-Rizo C, Tournier-Lasserve E. Cerebral cavernous malformations: from CCM genes to endothelial cell homeostasis. Trends Mol Med 19: 302–308, 2013. doi:10.1016/j.molmed.2013.02.004. [PubMed] [CrossRef] [Google Scholar]

179. Flemming KD, Graff-Radford J, Aakre J, Kantarci K, Lanzino G, Brown RD Jr, Mielke MM, Roberts RO, Kremers W, Knopman DS, Petersen RC, Jack CR Jr. Population-Based Prevalence of Cerebral Cavernous Malformations in Older Adults: Mayo Clinic Study of Aging. JAMA Neurol 74: 801–805, 2017. doi:10.1001/jamaneurol.2017.0439. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

180. Fonseca MI, Chu S, Pierce AL, Brubaker WD, Hauhart RE, Mastroeni D, Clarke EV, Rogers J, Atkinson JP, Tenner AJ. Analysis of the Putative Role of CR1 in Alzheimer's Disease: Genetic Association, Expression and Function. PLoS One 11: e0149792, 2016. doi:10.1371/journal.pone.0149792. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Foroutan S, Brillault J, Forbush B, O'Donnell ME. Moderate-to-severe ischemic conditions increase activity and phosphorylation of the cerebral microvascular endothelial cell Na+-K+-Cl- cotransporter. Am J Physiol Cell Physiol 289: C1492–C1501, 2005. doi:10.1152/ajpcell.00257.2005. [PubMed] [CrossRef] [Google Scholar]

182. Fournier AP, Quenault A, Martinez de Lizarrondo S, Gauberti M, Defer G, Vivien D, Docagne F, Macrez R. Prediction of disease activity in models of multiple sclerosis by molecular magnetic resonance imaging of P-selectin. Proc Natl Acad Sci USA 114: 6116–6121, 2017. doi:10.1073/pnas.1619424114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

183. Fox NC, Kennedy AM, Harvey RJ, Lantos PL, Roques PK, Collinge J, Hardy J, Hutton M, Stevens JM, Warrington EK, Rossor MN. Clinicopathological features of familial Alzheimer's disease associated with the M139V mutation in the presenilin 1 gene. Pedigree but not mutation specific age at onset provides evidence for a further genetic factor. Brain 120: 491–501, 1997. doi:10.1093/brain/120.3.491. [PubMed] [CrossRef] [Google Scholar]

184. Friese MA, Schattling B, Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol 10: 225–238, 2014. doi:10.1038/nrneurol.2014.37. [PubMed] [CrossRef] [Google Scholar]

185. Friesema ECH, Grueters A, Biebermann H, Krude H, von Moers A, Reeser M, Barrett TG, Mancilla EE, Svensson J, Kester MHA, Kuiper GGJM, Balkassmi S, Uitterlinden AG, Koehrle J, Rodien P, Halestrap AP, Visser TJ. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364: 1435–1437, 2004. doi:10.1016/S0140-6736(04)17226-7. [PubMed] [CrossRef] [Google Scholar]

186. Fryer JD, Simmons K, Parsadanian M, Bales KR, Paul SM, Sullivan PM, Holtzman DM. Human apolipoprotein E4 alters the amyloid-beta 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. J Neurosci 25: 2803–2810, 2005. doi:10.1523/JNEUROSCI.5170-04.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

187. Fullerton SM, Shirman GA, Strittmatter WJ, Matthew WD. Impairment of the blood-nerve and blood-brain barriers in apolipoprotein e knockout mice. Exp Neurol 169: 13–22, 2001. doi:10.1006/exnr.2001.7631. [PubMed] [CrossRef] [Google Scholar]

188. Funck VR, Ribeiro LR, Pereira LM, de Oliveira CV, Grigoletto J, Della-Pace ID, Fighera MR, Royes LFF, Furian AF, Larrick JW, Oliveira MS. Contrasting effects of Na+,K+-ATPase activation on seizure activity in acute versus chronic models. Neuroscience 298: 171–179, 2015. doi:10.1016/j.neuroscience.2015.04.031. [PubMed] [CrossRef] [Google Scholar]

189. Furuno T, Landi M-T, Ceroni M, Caporaso N, Bernucci I, Nappi G, Martignoni E, Schaeffeler E, Eichelbaum M, Schwab M, Zanger UM. Expression polymorphism of the blood-brain barrier component P-glycoprotein (MDR1) in relation to Parkinson's disease. Pharmacogenetics 12: 529–534, 2002. doi:10.1097/00008571-200210000-00004. [PubMed] [CrossRef] [Google Scholar]

190. Gaitán MI, Shea CD, Evangelou IE, Stone RD, Fenton KM, Bielekova B, Massacesi L, Reich DS. Evolution of the blood-brain barrier in newly forming multiple sclerosis lesions. Ann Neurol 70: 22–29, 2011. doi:10.1002/ana.22472. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

191. Gama Sosa MA, Gasperi RD, Rocher AB, Wang AC-J, Janssen WGM, Flores T, Perez GM, Schmeidler J, Dickstein DL, Hof PR, Elder GA. Age-related vascular pathology in transgenic mice expressing presenilin 1-associated familial Alzheimer's disease mutations. Am J Pathol 176: 353–368, 2010. doi:10.2353/ajpath.2010.090482. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

192. Ganapathy ME, Huang W, Rajan DP, Carter AL, Sugawara M, Iseki K, Leibach FH, Ganapathy V. Beta-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J Biol Chem 275: 1699–1707, 2000. doi:10.1074/jbc.275.3.1699. [PubMed] [CrossRef] [Google Scholar]

193. Gao B, Vavricka SR, Meier PJ, Stieger B. Differential cellular expression of organic anion transporting peptides OATP1A2 and OATP2B1 in the human retina and brain: implications for carrier-mediated transport of neuropeptides and neurosteriods in the CNS. Pflugers Arch 467: 1481–1493, 2015. doi:10.1007/s00424-014-1596-x. [PubMed] [CrossRef] [Google Scholar]

194. Garbuzova-Davis S, Haller E, Saporta S, Kolomey I, Nicosia SV, Sanberg PR. Ultrastructure of blood-brain barrier and blood-spinal cord barrier in SOD1 mice modeling ALS. Brain Res 1157: 126–137, 2007. doi:10.1016/j.brainres.2007.04.044. [PubMed] [CrossRef] [Google Scholar]

195. Garbuzova-Davis S, Hernandez-Ontiveros DG, Rodrigues MCO, Haller E, Frisina-Deyo A, Mirtyl S, Sallot S, Saporta S, Borlongan CV, Sanberg PR. Impaired blood-brain/spinal cord barrier in ALS patients. Brain Res 1469: 114–128, 2012. doi:10.1016/j.brainres.2012.05.056. [PubMed] [CrossRef] [Google Scholar]

196. Garbuzova-Davis S, Saporta S, Haller E, Kolomey I, Bennett SP, Potter H, Sanberg PR. Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS One 2: e1205, 2007. doi:10.1371/journal.pone.0001205. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Garrido-Urbani S, Bradfield PF, Imhof BA. Tight junction dynamics: the role of junctional adhesion molecules (JAMs). Cell Tissue Res 355: 701–715, 2014. doi:10.1007/s00441-014-1820-1. [PubMed] [CrossRef] [Google Scholar]

198. Geng J, Wang L, Qu M, Song Y, Lin X, Chen Y, Mamtilahun M, Chen S, Zhang Z, Wang Y, Yang G-Y. Endothelial progenitor cells transplantation attenuated blood-brain barrier damage after ischemia in diabetic mice via HIF-1α. Stem Cell Res Ther 8: 163, 2017. doi:10.1186/s13287-017-0605-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

199. Genin E, Hannequin D, Wallon D, Sleegers K, Hiltunen M, Combarros O, Bullido MJ, Engelborghs S, De Deyn P, Berr C, Pasquier F, Dubois B, Tognoni G, Fiévet N, Brouwers N, Bettens K, Arosio B, Coto E, Del Zompo M, Mateo I, Epelbaum J, Frank-Garcia A, Helisalmi S, Porcellini E, Pilotto A, Forti P, Ferri R, Scarpini E, Siciliano G, Solfrizzi V, Sorbi S, Spalletta G, Valdivieso F, Vepsäläinen S, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossù P, Hanon O, Piccardi P, Annoni G, Seripa D, Galimberti D, Licastro F, Soininen H, Dartigues J-F, Kamboh MI, Van Broeckhoven C, Lambert JC, Amouyel P, Campion D. APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol Psychiatry 16: 903–907, 2011. doi:10.1038/mp.2011.52. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

200. Gerhardt H, Wolburg H, Redies C. N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev Dyn 218: 472–479, 2000. doi:10.1002/1097-0177(200007)218:3<472::AID-DVDY1008>3.0.CO;2-#. [PubMed] [CrossRef] [Google Scholar]

201. Gerwien H, Hermann S, Zhang X, Korpos E, Song J, Kopka K, Faust A, Wenning C, Gross CC, Honold L, Melzer N, Opdenakker G, Wiendl H, Schäfers M, Sorokin L. Imaging matrix metalloproteinase activity in multiple sclerosis as a specific marker of leukocyte penetration of the blood-brain barrier. Sci Transl Med 8: 364ra152, 2016. doi:10.1126/scitranslmed.aaf8020. [PubMed] [CrossRef] [Google Scholar]

202. Ghosh M, Balbi M, Hellal F, Dichgans M, Lindauer U, Plesnila N. Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann Neurol 78: 887–900, 2015. doi:10.1002/ana.24512. [PubMed] [CrossRef] [Google Scholar]

203. Giri R, Shen Y, Stins M, Du Yan S, Schmidt AM, Stern D, Kim KS, Zlokovic B, Kalra VK. β-Amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. Am J Physiol Cell Physiol 279: C1772–C1781, 2000. doi:10.1152/ajpcell.2000.279.6.C1772. [PubMed] [CrossRef] [Google Scholar]

204. Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery 75, Suppl 4: S24–S33, 2014. doi:10.1227/NEU.0000000000000505. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

205. Gliemann J, Hermey G, Nykjaer A, Petersen CM, Jacobsen C, Andreasen PA. The mosaic receptor sorLA/LR11 binds components of the plasminogen-activating system and platelet-derived growth factor-BB similarly to LRP1 (low-density lipoprotein receptor-related protein), but mediates slow internalization of bound ligand. Biochem J 381: 203–212, 2004. doi:10.1042/BJ20040149. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

206. Golden PL, Maccagnan TJ, Pardridge WM. Human blood-brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. J Clin Invest 99: 14–18, 1997. doi:10.1172/JCI119125. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

207. González-Maciel A, Reynoso-Robles R, Torres-Jardón R, Mukherjee PS, Calderón-Garcidueñas L. Combustion-Derived Nanoparticles in Key Brain Target Cells and Organelles in Young Urbanites: Culprit Hidden in Plain Sight in Alzheimer's Disease Development. J Alzheimers Dis 59: 189–208, 2017. doi:10.3233/JAD-170012. [PubMed] [CrossRef] [Google Scholar]

208. Goos JDC, Kester MI, Barkhof F, Klein M, Blankenstein MA, Scheltens P, van der Flier WM. Patients with Alzheimer disease with multiple microbleeds: relation with cerebrospinal fluid biomarkers and cognition. Stroke 40: 3455–3460, 2009. doi:10.1161/STROKEAHA.109.558197. [PubMed] [CrossRef] [Google Scholar]

209. Gorter JA, van Vliet EA, Aronica E. Status epilepticus, blood-brain barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav 49: 13–16, 2015. doi:10.1016/j.yebeh.2015.04.047. [PubMed] [CrossRef] [Google Scholar]

210. Gould DB, Phalan FC, van Mil SE, Sundberg JP, Vahedi K, Massin P, Bousser MG, Heutink P, Miner JH, Tournier-Lasserve E, John SWM. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 354: 1489–1496, 2006. doi:10.1056/NEJMoa053727. [PubMed] [CrossRef] [Google Scholar]

211. Grabowski TJ, Cho HS, Vonsattel JP, Rebeck GW, Greenberg SM. Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol 49: 697–705, 2001. doi:10.1002/ana.1009. [PubMed] [CrossRef] [Google Scholar]

212. Gralinski LE, Ashley SL, Dixon SD, Spindler KR. Mouse adenovirus type 1-induced breakdown of the blood-brain barrier. J Virol 83: 9398–9410, 2009. doi:10.1128/JVI.00954-09. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

213. Grammas P, Tripathy D, Sanchez A, Yin X, Luo J. Brain microvasculature and hypoxia-related proteins in Alzheimer's disease. Int J Clin Exp Pathol 4: 616–627, 2011. [PMC free article] [PubMed] [Google Scholar]

214. Gray MT, Woulfe JM. Striatal blood-brain barrier permeability in Parkinson's disease. J Cereb Blood Flow Metab 35: 747–750, 2015. doi:10.1038/jcbfm.2015.32. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

215. Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B. Review: leucocyte-endothelial cell crosstalk at the blood-brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 37: 24–39, 2011. doi:10.1111/j.1365-2990.2010.01140.x. [PubMed] [CrossRef] [Google Scholar]

216. Greenwood J, Wang Y, Calder VL. Lymphocyte adhesion and transendothelial migration in the central nervous system: the role of LFA-1, ICAM-1, VLA-4 and VCAM-1. off. Immunology 86: 408–415, 1995. [PMC free article] [PubMed] [Google Scholar]

217. Griffin JH, Zlokovic BV, Mosnier LO. Activated protein C: biased for translation. Blood 125: 2898–2907, 2015. doi:10.1182/blood-2015-02-355974. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

218. Guemez-Gamboa A, Nguyen LN, Yang H, Zaki MS, Kara M, Ben-Omran T, Akizu N, Rosti RO, Rosti B, Scott E, Schroth J, Copeland B, Vaux KK, Cazenave-Gassiot A, Quek DQY, Wong BH, Tan BC, Wenk MR, Gunel M, Gabriel S, Chi NC, Silver DL, Gleeson JG. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat Genet 47: 809–813, 2015. doi:10.1038/ng.3311. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

219. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JSK, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert J-C, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St George-Hyslop P, Singleton A, Hardy J; Alzheimer Genetic Analysis Group . TREM2 variants in Alzheimer's disease. N Engl J Med 368: 117–127, 2013. doi:10.1056/NEJMoa1211851. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

220. van de Haar HJ, Burgmans S, Jansen JFA, van Osch MJP, van Buchem MA, Muller M, Hofman PAM, Verhey FRJ, Backes WH. Blood-Brain Barrier Leakage in Patients with Early Alzheimer Disease. Radiology 281: 527–535, 2016. doi:10.1148/radiol.2016152244. [PubMed] [CrossRef] [Google Scholar]

221. van de Haar HJ, Jansen JFA, Jeukens CRLPN, Burgmans S, van Buchem MA, Muller M, Hofman PAM, Verhey FRJ, van Osch MJP, Backes WH. Subtle blood-brain barrier leakage rate and spatial extent: considerations for dynamic contrast-enhanced MRI. Med Phys 44: 4112–4125, 2017. doi:10.1002/mp.12328. [PubMed] [CrossRef] [Google Scholar]

222. van de Haar HJ, Jansen JFA, van Osch MJP, van Buchem MA, Muller M, Wong SM, Hofman PAM, Burgmans S, Verhey FRJ, Backes WH. Neurovascular unit impairment in early Alzheimer's disease measured with magnetic resonance imaging. Neurobiol Aging 45: 190–196, 2016. doi:10.1016/j.neurobiolaging.2016.06.006. [PubMed] [CrossRef] [Google Scholar]

223. Habgood MD, Bye N, Dziegielewska KM, Ek CJ, Lane MA, Potter A, Morganti-Kossmann C, Saunders NR. Changes in blood-brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci 25: 231–238, 2007. doi:10.1111/j.1460-9568.2006.05275.x. [PubMed] [CrossRef] [Google Scholar]

224. Hachinski V; World Stroke Organization . Stroke and Potentially Preventable Dementias Proclamation: Updated World Stroke Day Proclamation. Stroke 46: 3039–3040, 2015. doi:10.1161/STROKEAHA.115.011237. [PubMed] [CrossRef] [Google Scholar]

225. Haeusler AR, Donnelly CJ, Periz G, Simko EAJ, Shaw PG, Kim M-S, Maragakis NJ, Troncoso JC, Pandey A, Sattler R, Rothstein JD, Wang J. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507: 195–200, 2014. doi:10.1038/nature13124. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

226. Hafezi-Moghadam A, Thomas KL, Wagner DD. ApoE deficiency leads to a progressive age-dependent blood-brain barrier leakage. Am J Physiol Cell Physiol 292: C1256–C1262, 2007. doi:10.1152/ajpcell.00563.2005. [PubMed] [CrossRef] [Google Scholar]

227. Hajjar I, Sorond F, Lipsitz LA. Apolipoprotein E, carbon dioxide vasoreactivity, and cognition in older adults: effect of hypertension. J Am Geriatr Soc 63: 276–281, 2015. doi:10.1111/jgs.13235. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

228. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O'Farrell FM, Buchan AM, Lauritzen M, Attwell D. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508: 55–60, 2014. doi:10.1038/nature13165. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

229. Halliday MR, Pomara N, Sagare AP, Mack WJ, Frangione B, Zlokovic BV. Relationship between cyclophilin a levels and matrix metalloproteinase 9 activity in cerebrospinal fluid of cognitively normal apolipoprotein e4 carriers and blood-brain barrier breakdown. JAMA Neurol 70: 1198–1200, 2013. doi:10.1001/jamaneurol.2013.3841. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

230. Halliday MR, Rege SV, Ma Q, Zhao Z, Miller CA, Winkler EA, Zlokovic BV. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. J Cereb Blood Flow Metab 36: 216–227, 2016. doi:10.1038/jcbfm.2015.44. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

231. Ham JH, Yi H, Sunwoo MK, Hong JY, Sohn YH, Lee PH. Cerebral microbleeds in patients with Parkinson's disease. J Neurol 261: 1628–1635, 2014. doi:10.1007/s00415-014-7403-y. [PubMed] [CrossRef] [Google Scholar]

232. Hamilton NB, Attwell D, Hall CN. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenergetics 2: 5, 2010. doi:10.3389/fnene.2010.00005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

233. Hammer C, Stepniak B, Schneider A, Papiol S, Tantra M, Begemann M, Sirén A-L, Pardo LA, Sperling S, Mohd Jofrry S, Gurvich A, Jensen N, Ostmeier K, Lühder F, Probst C, Martens H, Gillis M, Saher G, Assogna F, Spalletta G, Stöcker W, Schulz TF, Nave K-A, Ehrenreich H. Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity. Mol Psychiatry 19: 1143–1149, 2014. doi:10.1038/mp.2013.110. [PubMed] [CrossRef] [Google Scholar]

234. Han H, Mann A, Ekstein D, Eyal S. Breaking Bad: the Structure and Function of the Blood-Brain Barrier in Epilepsy. AAPS J 19: 973–988, 2017. doi:10.1208/s12248-017-0096-2. [PubMed] [CrossRef] [Google Scholar]

235. Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV. Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release 207: 18–30, 2015. doi:10.1016/j.jconrel.2015.03.033. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

236. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schürmann B, Heun R, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H, Hüll M, Rujescu D, Goate AM, Kauwe JSK, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Mühleisen TW, Nöthen MM, Moebus S, Jöckel K-H, Klopp N, Wichmann H-E, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O'Donovan M, Owen MJ, Williams J. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease [Correction in Nat Genet 45: 712, 2013.]. Nat Genet 41: 1088–1093, 2009. doi:10.1038/ng.440. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

237. Hasoon J. Blast-associated traumatic brain injury in the military as a potential trigger for dementia and chronic traumatic encephalopathy. US Army Med Dep J 17: 102–105, 2017. [PubMed] [Google Scholar]

238. Hawkes CA, Shaw JE, Brown M, Sampson AP, McLaurin J, Carare RO. MK886 reduces cerebral amyloid angiopathy severity in TgCRND8 mice. Neurodegener Dis 13: 17–23, 2014. doi:10.1159/000351096. [PubMed] [CrossRef] [Google Scholar]

239. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57: 173–185, 2005. doi:10.1124/pr.57.2.4. [PubMed] [CrossRef] [Google Scholar]

240. Hawkins RA, O'Kane RL, Simpson IA, Viña JR. Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr 136, Suppl: 218S–226S, 2006. doi:10.1093/jn/136.1.218S. [PubMed] [CrossRef] [Google Scholar]

241. He J, Hsuchou H, He Y, Kastin AJ, Wang Y, Pan W. Sleep restriction impairs blood-brain barrier function. J Neurosci 34: 14697–14706, 2014. doi:10.1523/JNEUROSCI.2111-14.2014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

242. He L, Vanlandewijck M, Raschperger E, Andaloussi Mäe M, Jung B, Lebouvier T, Ando K, Hofmann J, Keller A, Betsholtz C. Analysis of the brain mural cell transcriptome. Sci Rep 6: 35108, 2016. doi:10.1038/srep35108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

243. Henkel JS, Beers DR, Wen S, Bowser R, Appel SH. Decreased mRNA expression of tight junction proteins in lumbar spinal cords of patients with ALS. Neurology 72: 1614–1616, 2009. doi:10.1212/WNL.0b013e3181a41228. [PubMed] [CrossRef] [Google Scholar]

244. Henshall TL, Keller A, He L, Johansson BR, Wallgard E, Raschperger E, Mäe MA, Jin S, Betsholtz C, Lendahl U. Notch3 is necessary for blood vessel integrity in the central nervous system. Arterioscler Thromb Vasc Biol 35: 409–420, 2015. doi:10.1161/ATVBAHA.114.304849. [PubMed] [CrossRef] [Google Scholar]

245. Herbert SP, Stainier DYR. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12: 551–564, 2011. doi:10.1038/nrm3176. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

246. Heringa SM, Reijmer YD, Leemans A, Koek HL, Kappelle LJ, Biessels GJ; Utrecht Vascular Cognitive Impairment (VCI) Study Group . Multiple microbleeds are related to cerebral network disruptions in patients with early Alzheimer's disease. J Alzheimers Dis 38: 211–221, 2014. doi:10.3233/JAD-130542. [PubMed] [CrossRef] [Google Scholar]

247. Hermey G, Sjøgaard SS, Petersen CM, Nykjaer A, Gliemann J. Tumour necrosis factor alpha-converting enzyme mediates ectodomain shedding of Vps10p-domain receptor family members. Biochem J 395: 285–293, 2006. doi:10.1042/BJ20051364. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

248. Heye AK, Thrippleton MJ, Armitage PA, Valdés Hernández MDC, Makin SD, Glatz A, Sakka E, Wardlaw JM. Tracer kinetic modelling for DCE-MRI quantification of subtle blood-brain barrier permeability. Neuroimage 125: 446–455, 2016. doi:10.1016/j.neuroimage.2015.10.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

249. Hicks K, O'Neil RG, Dubinsky WS, Brown RC. TRPC-mediated actin-myosin contraction is critical for BBB disruption following hypoxic stress. Am J Physiol Cell Physiol 298: C1583–C1593, 2010. doi:10.1152/ajpcell.00458.2009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

250. Hill KK, Campbell MC, McNeely ME, Karimi M, Ushe M, Tabbal SD, Hershey T, Flores HP, Hartlein JM, Lugar HM, Revilla FJ, Videen TO, Earhart GM, Perlmutter JS. Cerebral blood flow responses to dorsal and ventral STN DBS correlate with gait and balance responses in Parkinson's disease. Exp Neurol 241: 105–112, 2013. doi:10.1016/j.expneurol.2012.12.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

251. Hirschi KK, Burt JM, Hirschi KD, Dai C. Gap junction communication mediates transforming growth factor-beta activation and endothelial-induced mural cell differentiation. Circ Res 93: 429–437, 2003. doi:10.1161/01.RES.0000091259.84556.D5. [PubMed] [CrossRef] [Google Scholar]

252. Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11: 26, 2014. doi:10.1186/2045-8118-11-26. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

253. Hochwald GM, Wald A, Malhan C. The sink action of cerebrospinal fluid volume flow. Effect on brain water content. Arch Neurol 33: 339–344, 1976. doi:10.1001/archneur.1976.00500050025005. [PubMed] [CrossRef] [Google Scholar]

254. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A, Ivanov D, Widdowson C, Chapman J, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Beaumont H, Warden D, Wilcock G, Love S, Kehoe PG, Hooper NM, Vardy ERLC, Hardy J, Mead S, Fox NC, Rossor M, Collinge J, Maier W, Jessen F, Rüther E, Schürmann B, Heun R, Kölsch H, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H, Gallacher J, Hüll M, Rujescu D, Giegling I, Goate AM, Kauwe JSK, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Mühleisen TW, Nöthen MM, Moebus S, Jöckel K-H, Klopp N, Wichmann H-E, Pankratz VS, Sando SB, Aasly JO, Barcikowska M, Wszolek ZK, Dickson DW, Graff-Radford NR, Petersen RC, van Duijn CM, Breteler MMB, Ikram MA, DeStefano AL, Fitzpatrick AL, Lopez O, Launer LJ, Seshadri S, Berr C, Campion D, Epelbaum J, Dartigues J-F, Tzourio C, Alpérovitch A, Lathrop M, Feulner TM, Friedrich P, Riehle C, Krawczak M, Schreiber S, Mayhaus M, Nicolhaus S, Wagenpfeil S, Steinberg S, Stefansson H, Stefansson K, Snaedal J, Björnsson S, Jonsson PV, Chouraki V, Genier-Boley B, Hiltunen M, Soininen H, Combarros O, Zelenika D, Delepine M, Bullido MJ, Pasquier F, Mateo I, Frank-Garcia A, Porcellini E, Hanon O, Coto E, Alvarez V, Bosco P, Siciliano G, Mancuso M, Panza F, Solfrizzi V, Nacmias B, Sorbi S, Bossù P, Piccardi P, Arosio B, Annoni G, Seripa D, Pilotto A, Scarpini E, Galimberti D, Brice A, Hannequin D, Licastro F, Jones L, Holmans PA, Jonsson T, Riemenschneider M, Morgan K, Younkin SG, Owen MJ, O'Donovan M, Amouyel P, Williams J; Alzheimer's Disease Neuroimaging Initiative; CHARGE consortium; EADI1 consortium . Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet 43: 429–435, 2011. doi:10.1038/ng.803. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

255. Holter KE, Kehlet B, Devor A, Sejnowski TJ, Dale AM, Omholt SW, Ottersen OP, Nagelhus EA, Mardal K-A, Pettersen KH. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc Natl Acad Sci USA 114: 9894–9899, 2017. doi:10.1073/pnas.1706942114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

256. Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, McKeel D, Wozniak D, Paul SM. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 97: 2892–2897, 2000. doi:10.1073/pnas.050004797. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

257. Holtzman DM, Fagan AM, Mackey B, Tenkova T, Sartorius L, Paul SM, Bales K, Ashe KH, Irizarry MC, Hyman BT. Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer's disease model. Ann Neurol 47: 739–747, 2000. doi:10.1002/1531-8249(200006)47:6<739::AID-ANA6>3.0.CO;2-8. [PubMed] [CrossRef] [Google Scholar]

258. Holtzman DM, Herz J, Bu G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2: a006312, 2012. doi:10.1101/cshperspect.a006312. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

259. Hongge L, Kexin G, Xiaojie M, Nian X, Jinsha H. The role of LRRK2 in the regulation of monocyte adhesion to endothelial cells. J Mol Neurosci 55: 233–239, 2015. doi:10.1007/s12031-014-0312-9. [PubMed] [CrossRef] [Google Scholar]

260. Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A, Shamloo M, Hamilton SA, Jiang K, Huhn S, Palmer TD, Bliss TM, Steinberg GK. Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells 29: 274–285, 2011. doi:10.1002/stem.584. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

261. Horwood N, Davies DC. Immunolabelling of hippocampal microvessel glucose transporter protein is reduced in Alzheimer's disease. Virchows Arch 425: 69–72, 1994. doi:10.1007/BF00193951. [PubMed] [CrossRef] [Google Scholar]

262. Hoshi Y, Uchida Y, Tachikawa M, Inoue T, Ohtsuki S, Terasaki T. Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J Pharm Sci 102: 3343–3355, 2013. doi:10.1002/jps.23575. [PubMed] [CrossRef] [Google Scholar]

263. Hsiao H-Y, Chen Y-C, Huang C-H, Chen C-C, Hsu Y-H, Chen H-M, Chiu F-L, Kuo H-C, Chang C, Chern Y. Aberrant astrocytes impair vascular reactivity in Huntington disease. Ann Neurol 78: 178–192, 2015. doi:10.1002/ana.24428. [PubMed] [CrossRef] [Google Scholar]

264. Huang J, Upadhyay UM, Tamargo RJ. Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66: 232–245, 2006. doi:10.1016/j.surneu.2005.12.028. [PubMed] [CrossRef] [Google Scholar]

265. Huang K-L, Marcora E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC, Harari O, Bertelsen S, Fairfax BP, Czajkowski J, Chouraki V, Grenier-Boley B, Bellenguez C, Deming Y, McKenzie A, Raj T, Renton AE, Budde J, Smith A, Fitzpatrick A, Bis JC, DeStefano A, Adams HHH, Ikram MA, van der Lee S, Del-Aguila JL, Fernandez MV, Ibañez L, Sims R, Escott-Price V, Mayeux R, Haines JL, Farrer LA, Pericak-Vance MA, Lambert JC, van Duijn C, Launer L, Seshadri S, Williams J, Amouyel P, Schellenberg GD, Zhang B, Borecki I, Kauwe JSK, Cruchaga C, Hao K, Goate AM; International Genomics of Alzheimer's Project; Alzheimer's Disease Neuroimaging Initiative . A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease. Nat Neurosci 20: 1052–1061, 2017. doi:10.1038/nn.4587. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

266. Hudry E, Dashkoff J, Roe AD, Takeda S, Koffie RM, Hashimoto T, Scheel M, Spires-Jones T, Arbel-Ornath M, Betensky R, Davidson BL, Hyman BT. Gene transfer of human Apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain. Sci Transl Med 5: 212ra161, 2013. doi:10.1126/scitranslmed.3007000. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

267. Hultman K, Strickland S, Norris EH. The APOE ε4/ε4 genotype potentiates vascular fibrin(ogen) deposition in amyloid-laden vessels in the brains of Alzheimer's disease patients. J Cereb Blood Flow Metab 33: 1251–1258, 2013. doi:10.1038/jcbfm.2013.76. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

268. Hunt A, Schönknecht P, Henze M, Seidl U, Haberkorn U, Schröder J. Reduced cerebral glucose metabolism in patients at risk for Alzheimer's disease. Psychiatry Res 155: 147–154, 2007. doi:10.1016/j.pscychresns.2006.12.003. [PubMed] [CrossRef] [Google Scholar]

269. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci 5: 347–360, 2004. doi:10.1038/nrn1387. [PubMed] [CrossRef] [Google Scholar]

271. Iadecola C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 96: 17–42, 2017. doi:10.1016/j.neuron.2017.07.030. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

272. Iadecola C, Yaffe K, Biller J, Bratzke LC, Faraci FM, Gorelick PB, Gulati M, Kamel H, Knopman DS, Launer LJ, Saczynski JS, Seshadri S, Zeki Al Hazzouri A; American Heart Association Council on Hypertension; Council on Clinical Cardiology; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on Quality of Care and Outcomes Research; and Stroke Council . Impact of Hypertension on Cognitive Function: A Scientific Statement From the American Heart Association. Hypertension 68: e67–e94, 2016. doi:10.1161/HYP.0000000000000053. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

273. Ichimura T, Fraser PA, Cserr HF. Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res 545: 103–113, 1991. doi:10.1016/0006-8993(91)91275-6. [PubMed] [CrossRef] [Google Scholar]

274. Ikeda M, Sharma V, Sumi SM, Rogaeva EA, Poorkaj P, Sherrington R, Nee L, Tsuda T, Oda N, Watanabe M, Aoki M, Shoji M, Abe K, Itoyama Y, Hirai S, Schellenberg GD, Bird TD, St George-Hyslop PH. The clinical phenotype of two missense mutations in the presenilin I gene in Japanese patients. Ann Neurol 40: 912–917, 1996. doi:10.1002/ana.410400614. [PubMed] [CrossRef] [Google Scholar]

275. Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187: 761–772, 2009. doi:10.1083/jcb.200908164. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

276. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4: 147ra111, 2012. doi:10.1126/scitranslmed.3003748. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

277. Imon Y, Yamaguchi S, Yamamura Y, Tsuji S, Kajima T, Ito K, Nakamura S. Low intensity areas observed on T2-weighted magnetic resonance imaging of the cerebral cortex in various neurological diseases. J Neurol Sci 134, Suppl: 27–32, 1995. doi:10.1016/0022-510X(95)00205-G. [PubMed] [CrossRef] [Google Scholar]

278. Irizarry MC, Cheung BS, Rebeck GW, Paul SM, Bales KR, Hyman BT. Apolipoprotein E affects the amount, form, and anatomical distribution of amyloid beta-peptide deposition in homozygous APP(V717F) transgenic mice. Acta Neuropathol 100: 451–458, 2000. doi:10.1007/s004010000263. [PubMed] [CrossRef] [Google Scholar]

279. Iruela-Arispe ML, Davis GE. Cellular and molecular mechanisms of vascular lumen formation. Dev Cell 16: 222–231, 2009. doi:10.1016/j.devcel.2009.01.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

280. Ishii K, Ii K, Hasegawa T, Shoji S, Doi A, Mori H. Increased A beta 42(43)-plaque deposition in early-onset familial Alzheimer's disease brains with the deletion of exon 9 and the missense point mutation (H163R) in the PS-1 gene. Neurosci Lett 228: 17–20, 1997. doi:10.1016/S0304-3940(97)00347-9. [PubMed] [CrossRef] [Google Scholar]

281. Ishii M, Iadecola C. Adipocyte-derived factors in age-related dementia and their contribution to vascular and Alzheimer pathology. Biochim Biophys Acta 1862: 966–974, 2016. doi:10.1016/j.bbadis.2015.10.029. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

282. Ishrat T, Sayeed I, Atif F, Hua F, Stein DG. Progesterone and allopregnanolone attenuate blood-brain barrier dysfunction following permanent focal ischemia by regulating the expression of matrix metalloproteinases. Exp Neurol 226: 183–190, 2010. doi:10.1016/j.expneurol.2010.08.023. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

283. Ito S, Yanai M, Yamaguchi S, Couraud P-O, Ohtsuki S. Regulation of Tight-Junction Integrity by Insulin in an In Vitro Model of Human Blood-Brain Barrier. J Pharm Sci 106: 2599–2605, 2017. doi:10.1016/j.xphs.2017.04.036. [PubMed] [CrossRef] [Google Scholar]

284. Itoh T, Koshiba S, Kigawa T, Kikuchi A, Yokoyama S, Takenawa T. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291: 1047–1051, 2001. doi:10.1126/science.291.5506.1047. [PubMed] [CrossRef] [Google Scholar]

285. Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Pérez JM, Evans AC, Weiner MW, Aisen P, Petersen R, Jack CR, Jagust W, Trojanowki JQ, Toga AW, Beckett L, Green RC, Saykin AJ, Morris J, Shaw LM, Khachaturian Z, Sorensen G, Kuller L, Raichle M, Paul S, Davies P, Fillit H, Hefti F, Holtzman D, Mesulam MM, Potter W, Snyder P, Schwartz A, Montine T, Thomas RG, Donohue M, Walter S, Gessert D, Sather T, Jiminez G, Harvey D, Bernstein M, Fox N, Thompson P, Schuff N, Borowski B, Gunter J, Senjem M, Vemuri P, Jones D, Kantarci K, Ward C, Koeppe RA, Foster N, Reiman EM, Chen K, Mathis C, Landau S, Cairns NJ, Householder E, Taylor-Reinwald L, Lee V, Korecka M, Figurski M, Crawford K, Neu S, Foroud TM, Potkin S, Shen L, Faber K, Kim S, Nho K, Thal L, Buckholtz N, Albert M, Frank R, Hsiao J, Kaye J, Quinn J, Lind B, Carter R, Dolen S, Schneider LS, Pawluczyk S, Beccera M, Teodoro L, Spann BM, Brewer J, Vanderswag H, Fleisher A, Heidebrink JL, Lord JL, Mason SS, Albers CS, Knopman D, Johnson K, Doody RS, Villanueva-Meyer J, Chowdhury M, Rountree S, Dang M, Stern Y, Honig LS, Bell KL, Ances B, Carroll M, Leon S, Mintun MA, Schneider S, Oliver A, Marson D, Griffith R, Clark D, Geldmacher D, Brockington J, Roberson E, Grossman H, Mitsis E, de Toledo-Morrell L, Shah RC, Duara R, Varon D, Greig MT, Roberts P, Albert M, Onyike C, D'Agostino D, Kielb S, Galvin JE, Cerbone B, Michel CA, Rusinek H, de Leon MJ, Glodzik L, De Santi S, Doraiswamy PM, Petrella JR, Wong TZ, Arnold SE, Karlawish JH, Wolk D, Smith CD, Jicha G, Hardy P, Sinha P, Oates E, Conrad G, Lopez OL, Oakley MA, Simpson DM, Porsteinsson AP, Goldstein BS, Martin K, Makino KM, Ismail MS, Brand C, Mulnard RA, Thai G, Mc-Adams-Ortiz C, Womack K, Mathews D, Quiceno M, Diaz-Arrastia R, King R, Weiner M, Martin-Cook K, DeVous M, Levey AI, Lah JJ, Cellar JS, Burns JM, Anderson HS, Swerdlow RH, Apostolova L, Tingus K, Woo E, Silverman DHS, Lu PH, Bartzokis G, Graff-Radford NR, Parfitt F, Kendall T, Johnson H, Farlow MR, Hake AM, Matthews BR, Herring S, Hunt C, van Dyck CH, Carson RE, MacAvoy MG, Chertkow H, Bergman H, Hosein C, Black S, Stefanovic B, Caldwell C, Hsiung G-YR, Feldman H, Mudge B, Assaly M, Kertesz A, Rogers J, Bernick C, Munic D, Kerwin D, Mesulam M-M, Lipowski K, Wu C-K, Johnson N, Sadowsky C, Martinez W, Villena T, Turner RS, Johnson K, Reynolds B, Sperling RA, Johnson KA, Marshall G, Frey M, Lane B, Rosen A, Tinklenberg J, Sabbagh MN, Belden CM, Jacobson SA, Sirrel SA, Kowall N, Killiany R, Budson AE, Norbash A, Johnson PL, Allard J, Lerner A, Ogrocki P, Hudson L, Fletcher E, Carmichael O, Olichney J, DeCarli C, Kittur S, Borrie M, Lee T-Y, Bartha R, Johnson S, Asthana S, Carlsson CM, Potkin SG, Preda A, Nguyen D, Tariot P, Reeder S, Bates V, Capote H, Rainka M, Scharre DW, Kataki M, Adeli A, Zimmerman EA, Celmins D, Brown AD, Pearlson GD, Blank K, Anderson K, Santulli RB, Kitzmiller TJ, Schwartz ES, Sink KM, Williamson JD, Garg P, Watkins F, Ott BR, Querfurth H, Tremont G, Salloway S, Malloy P, Correia S, Rosen HJ, Miller BL, Mintzer J, Spicer K, Bachman D, Finger E, Pasternak S, Rachinsky I, Drost D, Pomara N, Hernando R, Sarrael A, Schultz SK, Ponto LLB, Shim H, Smith KE, Relkin N, Chaing G, Raudin L, Smith A, Fargher K, Raj BA, Neylan T, Grafman J, Davis M, Morrison R, Hayes J, Finley S, Friedl K, Fleischman D, Arfanakis K, James O, Massoglia D, Fruehling JJ, Harding S, Peskind ER, Petrie EC, Li G, Yesavage JA, Taylor JL, Furst AJ; Alzheimer's Disease Neuroimaging Initiative . Early role of vascular dysregulation on late-onset Alzheimer's disease based on multifactorial data-driven analysis. Nat Commun 7: 11934, 2016. doi:10.1038/ncomms11934. [CrossRef] [Google Scholar]

286. Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U, Friedman A. TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130: 535–547, 2007. doi:10.1093/brain/awl317. [PubMed] [CrossRef] [Google Scholar]

287. Janelidze S, Hertze J, Nägga K, Nilsson K, Nilsson C, Wennström M, van Westen D, Blennow K, Zetterberg H, Hansson O; Swedish BioFINDER Study Group . Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. Neurobiol Aging 51: 104–112, 2017. doi:10.1016/j.neurobiolaging.2016.11.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

288. Janelidze S, Lindqvist D, Francardo V, Hall S, Zetterberg H, Blennow K, Adler CH, Beach TG, Serrano GE, van Westen D, Londos E, Cenci MA, Hansson O. Increased CSF biomarkers of angiogenesis in Parkinson disease. Neurology 85: 1834–1842, 2015. doi:10.1212/WNL.0000000000002151. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

289. Janssen JC, Lantos PL, Fox NC, Harvey RJ, Beck J, Dickinson A, Campbell TA, Collinge J, Hanger DP, Cipolotti L, Stevens JM, Rossor MN. Autopsy-confirmed familial early-onset Alzheimer disease caused by the l153V presenilin 1 mutation. Arch Neurol 58: 953–958, 2001. doi:10.1001/archneur.58.6.953. [PubMed] [CrossRef] [Google Scholar]

290. Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY. Transferrin receptor on endothelium of brain capillaries. Nature 312: 162–163, 1984. doi:10.1038/312162a0. [PubMed] [CrossRef] [Google Scholar]

291. Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5: 209ra152, 2013. doi:10.1126/scitranslmed.3006839. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

292. Jessen Krut J, Mellberg T, Price RW, Hagberg L, Fuchs D, Rosengren L, Nilsson S, Zetterberg H, Gisslén M. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients. PLoS One 9: e88591, 2014. doi:10.1371/journal.pone.0088591. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

293. Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner's Guide. Neurochem Res 40: 2583–2599, 2015. doi:10.1007/s11064-015-1581-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

294. Ji Y, Permanne B, Sigurdsson EM, Holtzman DM, Wisniewski T. Amyloid beta40/42 clearance across the blood-brain barrier following intra-ventricular injections in wild-type, apoE knock-out and human apoE3 or E4 expressing transgenic mice. J Alzheimers Dis 3: 23–30, 2001. doi:10.3233/JAD-2001-3105. [PubMed] [CrossRef] [Google Scholar]

295. Jiang Q, Lee CYD, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, Collins JL, Richardson JC, Smith JD, Comery TA, Riddell D, Holtzman DM, Tontonoz P, Landreth GE. ApoE promotes the proteolytic degradation of Abeta. Neuron 58: 681–693, 2008. doi:10.1016/j.neuron.2008.04.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

296. Jin B-J, Smith AJ, Verkman AS. Spatial model of convective solute transport in brain extracellular space does not support a "glymphatic" mechanism. J Gen Physiol 148: 489–501, 2016. doi:10.1085/jgp.201611684. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

297. Jones CA, London NR, Chen H, Park KW, Sauvaget D, Stockton RA, Wythe JD, Suh W, Larrieu-Lahargue F, Mukouyama YS, Lindblom P, Seth P, Frias A, Nishiya N, Ginsberg MH, Gerhardt H, Zhang K, Li DY. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 14: 448–453, 2008. doi:10.1038/nm1742. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

298. Jones EL, Mok K, Hanney M, Harold D, Sims R, Williams J, Ballard C. Evidence that PICALM affects age at onset of Alzheimer's dementia in Down syndrome. Neurobiol Aging 34: 2441.e1–2441.e5, 2013. doi:10.1016/j.neurobiolaging.2013.03.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

299. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, Stefansson H, Sulem P, Gudbjartsson D, Maloney J, Hoyte K, Gustafson A, Liu Y, Lu Y, Bhangale T, Graham RR, Huttenlocher J, Bjornsdottir G, Andreassen OA, Jönsson EG, Palotie A, Behrens TW, Magnusson OT, Kong A, Thorsteinsdottir U, Watts RJ, Stefansson K. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 488: 96–99, 2012. doi:10.1038/nature11283. [PubMed] [CrossRef] [Google Scholar]

300. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K. Variant of TREM2 associated with the risk of Alzheimer's disease. N Engl J Med 368: 107–116, 2013. doi:10.1056/NEJMoa1211103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

301. Kalaria RN, Harik SI. Reduced glucose transporter at the blood-brain barrier and in cerebral cortex in Alzheimer disease. J Neurochem 53: 1083–1088, 1989. doi:10.1111/j.1471-4159.1989.tb07399.x. [PubMed] [CrossRef] [Google Scholar]

302. Kamp JA, Moursel LG, Haan J, Terwindt GM, Lesnik Oberstein SAMJ, van Duinen SG, van Roon-Mom WMC. Amyloid β in hereditary cerebral hemorrhage with amyloidosis-Dutch type. Rev Neurosci 25: 641–651, 2014. doi:10.1515/revneuro-2014-0008. [PubMed] [CrossRef] [Google Scholar]

303. Karch CM, Cruchaga C, Goate AM. Alzheimer's disease genetics: from the bench to the clinic. Neuron 83: 11–26, 2014. doi:10.1016/j.neuron.2014.05.041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

304. Karch CM, Goate AM. Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77: 43–51, 2015. doi:10.1016/j.biopsych.2014.05.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

305. Keaney J, Campbell M. The dynamic blood-brain barrier. FEBS J 282: 4067–4079, 2015. doi:10.1111/febs.13412. [PubMed] [CrossRef] [Google Scholar]

306. Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11: 720–731, 2012. doi:10.1016/S1474-4422(12)70104-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

307. Keep RF, Xiang J, Ennis SR, Andjelkovic A, Hua Y, Xi G, Hoff JT. Blood-brain barrier function in intracerebral hemorrhage. Acta Neurochir Suppl (Wien) 105: 73–77, 2008. doi:10.1007/978-3-211-09469-3_15. [PubMed] [CrossRef] [Google Scholar]

308. Keep RF, Zhou N, Xiang J, Andjelkovic AV, Hua Y, Xi G. Vascular disruption and blood-brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS 11: 18, 2014. doi:10.1186/2045-8118-11-18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

309. Keller A, Westenberger A, Sobrido MJ, García-Murias M, Domingo A, Sears RL, Lemos RR, Ordoñez-Ugalde A, Nicolas G, da Cunha JEG, Rushing EJ, Hugelshofer M, Wurnig MC, Kaech A, Reimann R, Lohmann K, Dobričić V, Carracedo A, Petrović I, Miyasaki JM, Abakumova I, Mäe MA, Raschperger E, Zatz M, Zschiedrich K, Klepper J, Spiteri E, Prieto JM, Navas I, Preuss M, Dering C, Janković M, Paucar M, Svenningsson P, Saliminejad K, Khorshid HRK, Novaković I, Aguzzi A, Boss A, Le Ber I, Defer G, Hannequin D, Kostić VS, Campion D, Geschwind DH, Coppola G, Betsholtz C, Klein C, Oliveira JRM. Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nat Genet 45: 1077–1082, 2013. doi:10.1038/ng.2723. [PubMed] [CrossRef] [Google Scholar]

310. Kelton W, Waindok AC, Pesch T, Pogson M, Ford K, Parola C, Reddy ST. Reprogramming MHC specificity by CRISPR-Cas9-assisted cassette exchange. Sci Rep 7: 45775, 2017. doi:10.1038/srep45775. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

311. Kero M, Paetau A, Polvikoski T, Tanskanen M, Sulkava R, Jansson L, Myllykangas L, Tienari PJ. Amyloid precursor protein (APP) A673T mutation in the elderly Finnish population. Neurobiol Aging 34: 1518.e1–1518.e3, 2013. doi:10.1016/j.neurobiolaging.2012.09.017. [PubMed] [CrossRef] [Google Scholar]

312. Khatri R, McKinney AM, Swenson B, Janardhan V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology 79, Suppl 1: S52–S57, 2012. doi:10.1212/WNL.0b013e3182697e70. [PubMed] [CrossRef] [Google Scholar]

313. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC. Amyotrophic lateral sclerosis. Lancet 377: 942–955, 2011. doi:10.1016/S0140-6736(10)61156-7. [PubMed] [CrossRef] [Google Scholar]

314. Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer's disease. Neuron 63: 287–303, 2009. doi:10.1016/j.neuron.2009.06.026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

315. Kim J, Jiang H, Park S, Eltorai AEM, Stewart FR, Yoon H, Basak JM, Finn MB, Holtzman DM. Haploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-β amyloidosis. J Neurosci 31: 18007–18012, 2011. doi:10.1523/JNEUROSCI.3773-11.2011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

316. Kim SY, Buckwalter M, Soreq H, Vezzani A, Kaufer D. Blood-brain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia 53, Suppl 6: 37–44, 2012. doi:10.1111/j.1528-1167.2012.03701.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

317. Kirk J, Plumb J, Mirakhur M, McQuaid S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J Pathol 201: 319–327, 2003. doi:10.1002/path.1434. [PubMed] [CrossRef] [Google Scholar]

318. Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 18: 419–434, 2017. doi:10.1038/nrn.2017.48. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

319. Kisler K, Nelson AR, Rege SV, Ramanathan A, Wang Y, Ahuja A, Lazic D, Tsai PS, Zhao Z, Zhou Y, Boas DA, Sakadžić S, Zlokovic BV. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci 20: 406–416, 2017. doi:10.1038/nn.4489. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

320. Klein RS, Garber C, Howard N. Infectious immunity in the central nervous system and brain function. Nat Immunol 18: 132–141, 2017. doi:10.1038/ni.3656. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

321. Klohs J, Deistung A, Schweser F, Grandjean J, Dominietto M, Waschkies C, Nitsch RM, Knuesel I, Reichenbach JR, Rudin M. Detection of cerebral microbleeds with quantitative susceptibility mapping in the ArcAbeta mouse model of cerebral amyloidosis. J Cereb Blood Flow Metab 31: 2282–2292, 2011. doi:10.1038/jcbfm.2011.118. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

322. Klohs J, Politano IW, Deistung A, Grandjean J, Drewek A, Dominietto M, Keist R, Schweser F, Reichenbach JR, Nitsch RM, Knuesel I, Rudin M. Longitudinal Assessment of Amyloid Pathology in Transgenic ArcAβ Mice Using Multi-Parametric Magnetic Resonance Imaging. PLoS One 8: e66097, 2013. doi:10.1371/journal.pone.0066097. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

323. Klyachko NL, Haney MJ, Zhao Y, Manickam DS, Mahajan V, Suresh P, Hingtgen SD, Mosley RL, Gendelman HE, Kabanov AV, Batrakova EV. Macrophages offer a paradigm switch for CNS delivery of therapeutic proteins. Nanomedicine (Lond) 9: 1403–1422, 2014. doi:10.2217/nnm.13.115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

324. Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, Steinberg GK, Barres BA, Nimmerjahn A, Agalliu D. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 82: 603–617, 2014. doi:10.1016/j.neuron.2014.03.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

325. Kokjohn TA, Maarouf CL, Daugs ID, Hunter JM, Whiteside CM, Malek-Ahmadi M, Rodriguez E, Kalback W, Jacobson SA, Sabbagh MN, Beach TG, Roher AE. Neurochemical profile of dementia pugilistica. J Neurotrauma 30: 981–997, 2013. doi:10.1089/neu.2012.2699. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

326. Korn C, Augustin HG. Mechanisms of Vessel Pruning and Regression. Dev Cell 34: 5–17, 2015. doi:10.1016/j.devcel.2015.06.004. [PubMed] [CrossRef] [Google Scholar]

327. Kortekaas R, Leenders KL, van Oostrom JCH, Vaalburg W, Bart J, Willemsen ATM, Hendrikse NH. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57: 176–179, 2005. doi:10.1002/ana.20369. [PubMed] [CrossRef] [Google Scholar]

328. Kovacs GG, Lutz MI, Ricken G, Ströbel T, Höftberger R, Preusser M, Regelsberger G, Hönigschnabl S, Reiner A, Fischer P, Budka H, Hainfellner JA. Dura mater is a potential source of Aβ seeds. Acta Neuropathol 131: 911–923, 2016. doi:10.1007/s00401-016-1565-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

329. Kovacs ZI, Kim S, Jikaria N, Qureshi F, Milo B, Lewis BK, Bresler M, Burks SR, Frank JA. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci USA 114: E75–E84, 2017. doi:10.1073/pnas.1614777114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

330. Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 71: 2–14, 2014. doi:10.1016/j.addr.2013.08.008. [PubMed] [CrossRef] [Google Scholar]

331. Kruyer A, Soplop N, Strickland S, Norris EH. Chronic Hypertension Leads to Neurodegeneration in the TgSwDI Mouse Model of Alzheimer's Disease. Hypertension 66: 175–182, 2015. doi:10.1161/HYPERTENSIONAHA.115.05524. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

332. Kuhnert F, Mancuso MR, Shamloo A, Wang H-T, Choksi V, Florek M, Su H, Fruttiger M, Young WL, Heilshorn SC, Kuo CJ. Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330: 985–989, 2010. doi:10.1126/science.1196554. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

333. Kumar A, D'Souza SS, Moskvin OV, Toh H, Wang B, Zhang J, Swanson S, Guo L-W, Thomson JA, Slukvin II. Specification and Diversification of Pericytes and Smooth Muscle Cells from Mesenchymoangioblasts. Cell Reports 19: 1902–1916, 2017. doi:10.1016/j.celrep.2017.05.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

334. Kumar H, Jo M-J, Choi H, Muttigi MS, Shon S, Kim B-J, Lee S-H, Han I-B. Matrix Metalloproteinase-8 Inhibition Prevents Disruption of Blood-Spinal Cord Barrier and Attenuates Inflammation in Rat Model of Spinal Cord Injury. Mol Neurobiol 55: 2577–2590, 2018. doi:10.1007/s12035-017-0509-3. [PubMed] [CrossRef] [Google Scholar]

335. Kumar-Singh S, Cras P, Wang R, Kros JM, van Swieten J, Lübke U, Ceuterick C, Serneels S, Vennekens K, Timmermans J-P, Van Marck E, Martin J-J, van Duijn CM, Van Broeckhoven C. Dense-core senile plaques in the Flemish variant of Alzheimer's disease are vasocentric. Am J Pathol 161: 507–520, 2002. doi:10.1016/S0002-9440(10)64207-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

336. Kumar-Singh S, Pirici D, McGowan E, Serneels S, Ceuterick C, Hardy J, Duff K, Dickson D, Van Broeckhoven C. Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer's disease are centered on vessel walls. Am J Pathol 167: 527–543, 2005. doi:10.1016/S0002-9440(10)62995-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

337. Kuo DS, Labelle-Dumais C, Gould DB. COL4A1 and COL4A2 mutations and disease: insights into pathogenic mechanisms and potential therapeutic targets. Hum Mol Genet 21, R1: R97–R110, 2012. doi:10.1093/hmg/dds346. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

338. Kuo YM, Kokjohn TA, Kalback W, Luehrs D, Galasko DR, Chevallier N, Koo EH, Emmerling MR, Roher AE. Amyloid-beta peptides interact with plasma proteins and erythrocytes: implications for their quantitation in plasma. Biochem Biophys Res Commun 268: 750–756, 2000. doi:10.1006/bbrc.2000.2222. [PubMed] [CrossRef] [Google Scholar]

339. Kwan JY, Jeong SY, Van Gelderen P, Deng H-X, Quezado MM, Danielian LE, Butman JA, Chen L, Bayat E, Russell J, Siddique T, Duyn JH, Rouault TA, Floeter MK. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS One 7: e35241, 2012. doi:10.1371/journal.pone.0035241. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

340. Lacoste B, Comin CH, Ben-Zvi A, Kaeser PS, Xu X, Costa LF, Gu C. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex. Neuron 83: 1117–1130, 2014. doi:10.1016/j.neuron.2014.07.034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

341. Lacoste B, Gu C. Control of cerebrovascular patterning by neural activity during postnatal development. Mech Dev 138: 43–49, 2015. doi:10.1016/j.mod.2015.06.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

342. Lamagna C, Meda P, Mandicourt G, Brown J, Gilbert RJC, Jones EY, Kiefer F, Ruga P, Imhof BA, Aurrand-Lions M. Dual interaction of JAM-C with JAM-B and alpha(M)beta2 integrin: function in junctional complexes and leukocyte adhesion. Mol Biol Cell 16: 4992–5003, 2005. doi:10.1091/mbc.e05-04-0310. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

343. Lambert J-C, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Bettens K, Berr C, Pasquier F, Fiévet N, Barberger-Gateau P, Engelborghs S, De Deyn P, Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O, de Pancorbo MM, Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossù P, Piccardi P, Annoni G, Seripa D, Galimberti D, Hannequin D, Licastro F, Soininen H, Ritchie K, Blanché H, Dartigues J-F, Tzourio C, Gut I, Van Broeckhoven C, Alpérovitch A, Lathrop M, Amouyel P; European Alzheimer's Disease Initiative Investigators . Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet 41: 1094–1099, 2009. doi:10.1038/ng.439. [PubMed] [CrossRef] [Google Scholar]

344. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, Russo G, Thorton-Wells TA, Jones N, Smith AV, Chouraki V, Thomas C, Ikram MA, Zelenika D, Vardarajan BN, Kamatani Y, Lin CF, Gerrish A, Schmidt H, Kunkle B, Dunstan ML, Ruiz A, Bihoreau MT, Choi SH, Reitz C, Pasquier F, Cruchaga C, Craig D, Amin N, Berr C, Lopez OL, De Jager PL, Deramecourt V, Johnston JA, Evans D, Lovestone S, Letenneur L, Morón FJ, Rubinsztein DC, Eiriksdottir G, Sleegers K, Goate AM, Fiévet N, Huentelman MW, Gill M, Brown K, Kamboh MI, Keller L, Barberger-Gateau P, McGuiness B, Larson EB, Green R, Myers AJ, Dufouil C, Todd S, Wallon D, Love S, Rogaeva E, Gallacher J, St George-Hyslop P, Clarimon J, Lleo A, Bayer A, Tsuang DW, Yu L, Tsolaki M, Bossù P, Spalletta G, Proitsi P, Collinge J, Sorbi S, Sanchez-Garcia F, Fox NC, Hardy J, Deniz Naranjo MC, Bosco P, Clarke R, Brayne C, Galimberti D, Mancuso M, Matthews F, Moebus S, Mecocci P, Del Zompo M, Maier W, Hampel H, Pilotto A, Bullido M, Panza F, Caffarra P, Nacmias B, Gilbert JR, Mayhaus M, Lannefelt L, Hakonarson H, Pichler S, Carrasquillo MM, Ingelsson M, Beekly D, Alvarez V, Zou F, Valladares O, Younkin SG, Coto E, Hamilton-Nelson KL, Gu W, Razquin C, Pastor P, Mateo I, Owen MJ, Faber KM, Jonsson PV, Combarros O, O'Donovan MC, Cantwell LB, Soininen H, Blacker D, Mead S, Mosley TH Jr, Bennett DA, Harris TB, Fratiglioni L, Holmes C, de Bruijn RF, Passmore P, Montine TJ, Bettens K, Rotter JI, Brice A, Morgan K, Foroud TM, Kukull WA, Hannequin D, Powell JF, Nalls MA, Ritchie K, Lunetta KL, Kauwe JS, Boerwinkle E, Riemenschneider M, Boada M, Hiltuenen M, Martin ER, Schmidt R, Rujescu D, Wang LS, Dartigues JF, Mayeux R, Tzourio C, Hofman A, Nöthen MM, Graff C, Psaty BM, Jones L, Haines JL, Holmans PA, Lathrop M, Pericak-Vance MA, Launer LJ, Farrer LA, van Duijn CM, Van Broeckhoven C, Moskvina V, Seshadri S, Williams J, Schellenberg GD, Amouyel P European Alzheimer's Disease Initiative (EADI)Genetic and Environmental Risk in Alzheimer's DiseaseAlzheimer's Disease Genetic Consortium; Cohorts for Heart and Aging Research in Genomic Epidemiology . Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 45: 1452–1458, 2013. doi:10.1038/ng.2802. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

345. Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL, Weiner MW, Jagust WJ; Alzheimer's Disease Neuroimaging Initiative . Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging 32: 1207–1218, 2011. doi:10.1016/j.neurobiolaging.2009.07.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

346. Langford D, Grigorian A, Hurford R, Adame A, Ellis RJ, Hansen L, Masliah E. Altered P-glycoprotein expression in AIDS patients with HIV encephalitis. J Neuropathol Exp Neurol 63: 1038–1047, 2004. doi:10.1093/jnen/63.10.1038. [PubMed] [CrossRef] [Google Scholar]

347. Larson DM, Wrobleski MJ, Sagar GD, Westphale EM, Beyer EC. Differential regulation of connexin43 and connexin37 in endothelial cells by cell density, growth, and TGF-beta1. Am J Physiol Cell Physiol 272: C405–C415, 1997. doi:10.1152/ajpcell.1997.272.2.C405. [PubMed] [CrossRef] [Google Scholar]

348. Lazear HM, Daniels BP, Pinto AK, Huang AC, Vick SC, Doyle SE, Gale M Jr, Klein RS, Diamond MS. Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Sci Transl Med 7: 284ra59, 2015. doi:10.1126/scitranslmed.aaa4304. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

349. Le Guelte A, Galan-Moya E-M, Dwyer J, Treps L, Kettler G, Hebda JK, Dubois S, Auffray C, Chneiweiss H, Bidere N, Gavard J. Semaphorin 3A elevates endothelial cell permeability through PP2A inactivation. J Cell Sci 125: 4137–4146, 2012. doi:10.1242/jcs.108282. [PubMed] [CrossRef] [Google Scholar]

350. Lee S-W, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim Y-J, Kim K-W. SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 9: 900–906, 2003. doi:10.1038/nm889. [PubMed] [CrossRef] [Google Scholar]

351. Lee WJ, Hawkins RA, Viña JR, Peterson DR. Glutamine transport by the blood-brain barrier: a possible mechanism for nitrogen removal. Am J Physiol Cell Physiol 274: C1101–C1107, 1998. doi:10.1152/ajpcell.1998.274.4.C1101. [PubMed] [CrossRef] [Google Scholar]

352. Leech S, Kirk J, Plumb J, McQuaid S. Persistent endothelial abnormalities and blood-brain barrier leak in primary and secondary progressive multiple sclerosis. Neuropathol Appl Neurobiol 33: 86–98, 2007. doi:10.1111/j.1365-2990.2006.00781.x. [PubMed] [CrossRef] [Google Scholar]

353. Leeper NJ, Hunter AL, Cooke JP. Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation 122: 517–526, 2010. doi:10.1161/CIRCULATIONAHA.109.881441. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

354. Lemere CA, Lopera F, Kosik KS, Lendon CL, Ossa J, Saido TC, Yamaguchi H, Ruiz A, Martinez A, Madrigal L, Hincapie L, Arango JC, Anthony DC, Koo EH, Goate AM, Selkoe DJ, Arango JC. The E280A presenilin 1 Alzheimer mutation produces increased A beta 42 deposition and severe cerebellar pathology. Nat Med 2: 1146–1150, 1996. doi:10.1038/nm1096-1146. [PubMed] [CrossRef] [Google Scholar]

356. Levy E, Prelli F, Frangione B. Studies on the first described Alzheimer's disease amyloid beta mutant, the Dutch variant. J Alzheimers Dis 9, Suppl: 329–339, 2006. doi:10.3233/JAD-2006-9S337. [PubMed] [CrossRef] [Google Scholar]

357. Li J-Q, Tan L, Yu J-T. The role of the LRRK2 gene in Parkinsonism. Mol Neurodegener 9: 47, 2014. doi:10.1186/1750-1326-9-47. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

358. Li JY, Boado RJ, Pardridge WM. Blood-brain barrier genomics. J Cereb Blood Flow Metab 21: 61–68, 2001. doi:10.1097/00004647-200101000-00008. [PubMed] [CrossRef] [Google Scholar]

359. Li JY, Boado RJ, Pardridge WM. Rat blood-brain barrier genomics. II. J Cereb Blood Flow Metab 22: 1319–1326, 2002. doi:10.1097/01.WCB.0000040944.89393.0f. [PubMed] [CrossRef] [Google Scholar]

360. Liddelow SA, Barres BA. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity 46: 957–967, 2017. doi:10.1016/j.immuni.2017.06.006. [PubMed] [CrossRef] [Google Scholar]

361. Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M, Taketo MM, von Melchner H, Plate KH, Gerhardt H, Dejana E. Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol 183: 409–417, 2008. doi:10.1083/jcb.200806024. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

362. Liguori C, Olivola E, Pierantozzi M, Cerroni R, Galati S, Saviozzi V, Mercuri NB, Stefani A. Cerebrospinal-fluid Alzheimer's Disease Biomarkers and Blood-Brain Barrier Integrity in a Natural Population of Cognitive Intact Parkinson's Disease Patients. CNS Neurol Disord Drug Targets 16: 339–345, 2017. doi:10.2174/1871527316666161205123123. [PubMed] [CrossRef] [Google Scholar]

363. Lin C-J, Tai Y, Huang M-T, Tsai Y-F, Hsu H-J, Tzen K-Y, Liou H-H. Cellular localization of the organic cation transporters, OCT1 and OCT2, in brain microvessel endothelial cells and its implication for MPTP transport across the blood-brain barrier and MPTP-induced dopaminergic toxicity in rodents. J Neurochem 114: 717–727, 2010. doi:10.1111/j.1471-4159.2010.06801.x. [PubMed] [CrossRef] [Google Scholar]

364. Lin C-Y, Hsu Y-H, Lin M-H, Yang T-H, Chen H-M, Chen Y-C, Hsiao H-Y, Chen C-C, Chern Y, Chang C. Neurovascular abnormalities in humans and mice with Huntington's disease. Exp Neurol 250: 20–30, 2013. doi:10.1016/j.expneurol.2013.08.019. [PubMed] [CrossRef] [Google Scholar]

365. Lindahl P, Johansson BR, Levéen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277: 242–245, 1997. doi:10.1126/science.277.5323.242. [PubMed] [CrossRef] [Google Scholar]

366. Ling H, Morris HR, Neal JW, Lees AJ, Hardy J, Holton JL, Revesz T, Williams DDR. Mixed pathologies including chronic traumatic encephalopathy account for dementia in retired association football (soccer) players. Acta Neuropathol 133: 337–352, 2017. doi:10.1007/s00401-017-1680-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

367. Little TL, Beyer EC, Duling BR. Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am J Physiol Heart Circ Physiol 268: H729–H739, 1995. [PubMed] [Google Scholar]

368. Liu C-C, Liu C-C, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9: 106–118, 2013. doi:10.1038/nrneurol.2012.263. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

369. Liu EY, Russ J, Wu K, Neal D, Suh E, McNally AG, Irwin DJ, Van Deerlin VM, Lee EB. C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD. Acta Neuropathol 128: 525–541, 2014. doi:10.1007/s00401-014-1286-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

370. Liu H, Wang Y, Xiao Y, Hua Z, Cheng J, Jia J. Hydrogen Sulfide Attenuates Tissue Plasminogen Activator-Induced Cerebral Hemorrhage Following Experimental Stroke. Transl Stroke Res 7: 209–219, 2016. doi:10.1007/s12975-016-0459-5. [PubMed] [CrossRef] [Google Scholar]

371. Liu J, Dong F, Hoh J. Loss of HtrA1-induced attenuation of TGF-β signaling in fibroblasts might not be the main mechanism of CARASIL pathogenesis. Proc Natl Acad Sci USA 112: E1693, 2015. doi:10.1073/pnas.1500911112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

372. Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 28: 1–13, 2002. doi:10.1081/DDC-120001481. [PubMed] [CrossRef] [Google Scholar]

373. Loeffler DA, Connor JR, Juneau PL, Snyder BS, Kanaley L, DeMaggio AJ, Nguyen H, Brickman CM, LeWitt PA. Transferrin and iron in normal, Alzheimer's disease, and Parkinson's disease brain regions. J Neurochem 65: 710–716, 1995. doi:10.1046/j.1471-4159.1995.65020710.x. [PubMed] [CrossRef] [Google Scholar]

374. Longden TA, Dabertrand F, Koide M, Gonzales AL, Tykocki NR, Brayden JE, Hill-Eubanks D, Nelson MT. Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci 20: 717–726, 2017. doi:10.1038/nn.4533. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

375. Longden TA, Hill-Eubanks DC, Nelson MT. Ion channel networks in the control of cerebral blood flow. J Cereb Blood Flow Metab 36: 492–512, 2016. doi:10.1177/0271678X15616138. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

376. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature 523: 337–341, 2015. doi:10.1038/nature14432. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

377. Lutz SE, Raine CS, Brosnan CF. Loss of astrocyte connexins 43 and 30 does not significantly alter susceptibility or severity of acute experimental autoimmune encephalomyelitis in mice. J Neuroimmunol 245: 8–14, 2012. doi:10.1016/j.jneuroim.2012.01.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

378. Ma Q, Dasgupta C, Li Y, Huang L, Zhang L. MicroRNA-210 Suppresses Junction Proteins and Disrupts Blood-Brain Barrier Integrity in Neonatal Rat Hypoxic-Ischemic Brain Injury. Int J Mol Sci 18: E1356, 2017. doi:10.3390/ijms18071356. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

379. MacDonald ME; The Huntington's Disease Collaborative Research Group . A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72: 971–983, 1993. doi:10.1016/0092-8674(93)90585-E. [PubMed] [CrossRef] [Google Scholar]

380. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, Ferrarini L, Orsenigo F, Papa E, Boulday G, Tournier-Lasserve E, Chapon F, Richichi C, Retta SF, Lampugnani MG, Dejana E. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498: 492–496, 2013. doi:10.1038/nature12207. [PubMed] [CrossRef] [Google Scholar]

381. Maeda S, Nakayama H, Isaka K, Aihara Y, Nemoto S. Familial unusual encephalopathy of Binswanger's type without hypertension. Folia Psychiatr Neurol Jpn 30: 165–177, 1976. [PubMed] [Google Scholar]

382. Maggi P, Macri SMC, Gaitán MI, Leibovitch E, Wholer JE, Knight HL, Ellis M, Wu T, Silva AC, Massacesi L, Jacobson S, Westmoreland S, Reich DS. The formation of inflammatory demyelinated lesions in cerebral white matter. Ann Neurol 76: 594–608, 2014. doi:10.1002/ana.24242. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

383. Mahley RW, Huang Y. Apolipoprotein e sets the stage: response to injury triggers neuropathology. Neuron 76: 871–885, 2012. doi:10.1016/j.neuron.2012.11.020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

384. Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer's disease to AIDS. J Lipid Res 50, Suppl: S183–S188, 2009. doi:10.1194/jlr.R800069-JLR200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

385. Maikos JT, Shreiber DI. Immediate damage to the blood-spinal cord barrier due to mechanical trauma. J Neurotrauma 24: 492–507, 2007. doi:10.1089/neu.2006.0149. [PubMed] [CrossRef] [Google Scholar]

386. Malek N, Lawton MA, Swallow DMA, Grosset KA, Marrinan SL, Bajaj N, Barker RA, Burn DJ, Hardy J, Morris HR, Williams NM, Wood N, Ben-Shlomo Y, Grosset DG; PRoBaND Clinical Consortium . Vascular disease and vascular risk factors in relation to motor features and cognition in early Parkinson's disease. Mov Disord 31: 1518–1526, 2016. doi:10.1002/mds.26698. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

387. Mancuso MR, Kuhnert F, Kuo CJ. Developmental angiogenesis of the central nervous system. Lymphat Res Biol 6: 173–180, 2008. doi:10.1089/lrb.2008.1014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

388. Manfredsson FP, Rising AC, Mandel RJ. AAV9: a potential blood-brain barrier buster. Mol Ther 17: 403–405, 2009. doi:10.1038/mt.2009.15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

389. Mann DM, Iwatsubo T, Cairns NJ, Lantos PL, Nochlin D, Sumi SM, Bird TD, Poorkaj P, Hardy J, Hutton M, Prihar G, Crook R, Rossor MN, Haltia M. Amyloid beta protein (Abeta) deposition in chromosome 14-linked Alzheimer's disease: predominance of Abeta42(43). Ann Neurol 40: 149–156, 1996. doi:10.1002/ana.410400205. [PubMed] [CrossRef] [Google Scholar]

390. Mann GE, Yudilevich DL, Sobrevia L. Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev 83: 183–252, 2003. doi:10.1152/physrev.00022.2002. [PubMed] [CrossRef] [Google Scholar]

391. Mann GE, Zlokovic BV, Yudilevich DL. Evidence for a lactate transport system in the sarcolemmal membrane of the perfused rabbit heart: kinetics of unidirectional influx, carrier specificity and effects of glucagon. Biochim Biophys Acta 819: 241–248, 1985. doi:10.1016/0005-2736(85)90179-8. [PubMed] [CrossRef] [Google Scholar]

392. Maranzano J, Rudko DA, Nakamura K, Cook S, Cadavid D, Wolansky L, Arnold DL, Narayanan S. MRI evidence of acute inflammation in leukocortical lesions of patients with early multiple sclerosis. Neurology 89: 714–721, 2017. doi:10.1212/WNL.0000000000004227. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

393. Marchi N, Granata T, Freri E, Ciusani E, Ragona F, Puvenna V, Teng Q, Alexopolous A, Janigro D. Efficacy of anti-inflammatory therapy in a model of acute seizures and in a population of pediatric drug resistant epileptics. PLoS One 6: e18200, 2011. doi:10.1371/journal.pone.0018200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

394. Marín-Muñoz J, Noguera-Perea MF, Gómez-Tortosa E, López-Motos D, Antequera-Torres M, Martínez-Herrada B, Manzanares-Sánchez S, Vivancos-Moreau L, Legaz-García A, Rábano-Gutiérrez Del Arroyo A, Antúnez-Almagro C. Novel Mutation (Gly212Val) in the PS2 Gene Associated with Early-Onset Familial Alzheimer's Disease. J Alzheimers Dis 53: 73–78, 2016. doi:10.3233/JAD-160050. [PubMed] [CrossRef] [Google Scholar]

395. Markham A. Cerliponase Alfa: First Global Approval. Drugs 77: 1247–1249, 2017. doi:10.1007/s40265-017-0771-8. [PubMed] [CrossRef] [Google Scholar]

396. Mayerl S, Müller J, Bauer R, Richert S, Kassmann CM, Darras VM, Buder K, Boelen A, Visser TJ, Heuer H. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J Clin Invest 124: 1987–1999, 2014. doi:10.1172/JCI70324. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

397. McDougal DB Jr, Ferrendelli JA, Yip V, Pusateri ME, Carter JG, Chi MM, Norris B, Manchester J, Lowry OH. Use of nonradioactive 2-deoxyglucose to study compartmentation of brain glucose metabolism and rapid regional changes in rate. Proc Natl Acad Sci USA 87: 1357–1361, 1990. doi:10.1073/pnas.87.4.1357. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

398. McDowell GC II, Pope JE. Intrathecal Ziconotide: Dosing and Administration Strategies in Patients With Refractory Chronic Pain. Neuromodulation 19: 522–532, 2016. doi:10.1111/ner.12392. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

399. McGavern DB, Kang SS. Illuminating viral infections in the nervous system. Nat Rev Immunol 11: 318–329, 2011. doi:10.1038/nri2971. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

400. McInerney MP, Short JL, Nicolazzo JA. Neurovascular Alterations in Alzheimer's Disease: Transporter Expression Profiles and CNS Drug Access. AAPS J 19: 940–956, 2017. doi:10.1208/s12248-017-0077-5. [PubMed] [CrossRef] [Google Scholar]

401. McMurtray A, Nakamoto B, Shikuma C, Valcour V. Small-vessel vascular disease in human immunodeficiency virus infection: the Hawaii aging with HIV cohort study. Cerebrovasc Dis 24: 236–241, 2007. doi:10.1159/000104484. [PubMed] [CrossRef] [Google Scholar]

402. Meabon JS, Huber BR, Cross DJ, Richards TL, Minoshima S, Pagulayan KF, Li G, Meeker KD, Kraemer BC, Petrie EC, Raskind MA, Peskind ER, Cook DG. Repetitive blast exposure in mice and combat veterans causes persistent cerebellar dysfunction. Sci Transl Med 8: 321ra6, 2016. doi:10.1126/scitranslmed.aaa9585. [PubMed] [CrossRef] [Google Scholar]

403. Menezes MJ, McClenahan FK, Leiton CV, Aranmolate A, Shan X, Colognato H. The extracellular matrix protein laminin α2 regulates the maturation and function of the blood-brain barrier. J Neurosci 34: 15260–15280, 2014. doi:10.1523/JNEUROSCI.3678-13.2014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

404. Méresse S, Delbart C, Fruchart JC, Cecchelli R. Low-density lipoprotein receptor on endothelium of brain capillaries. J Neurochem 53: 340–345, 1989. doi:10.1111/j.1471-4159.1989.tb07340.x. [PubMed] [CrossRef] [Google Scholar]

405. Merlini M, Meyer EP, Ulmann-Schuler A, Nitsch RM. Vascular β-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAβ mice. Acta Neuropathol 122: 293–311, 2011. doi:10.1007/s00401-011-0834-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

406. Methia N, André P, Hafezi-Moghadam A, Economopoulos M, Thomas KL, Wagner DD. ApoE deficiency compromises the blood brain barrier especially after injury. Mol Med 7: 810–815, 2001. [PMC free article] [PubMed] [Google Scholar]

407. Meucci G, Rossi G, Bettini R, Montanaro D, Gironelli L, Voci L, Bianchi F. Laser nephelometric evaluation of albumin, IgG and alpha 2-macroglobulin: applications to the study of alterations of the blood-brain barrier. J Neurol Sci 118: 73–78, 1993. doi:10.1016/0022-510X(93)90248-W. [PubMed] [CrossRef] [Google Scholar]

408. Millar ID, Wang S, Brown PD, Barrand MA, Hladky SB. Kv1 and Kir2 potassium channels are expressed in rat brain endothelial cells. Pflugers Arch 456: 379–391, 2008. doi:10.1007/s00424-007-0377-1. [PubMed] [CrossRef] [Google Scholar]

409. Miller MA. Patterning with Diffusion Barriers. Dev Cell 35: 395–396, 2015. doi:10.1016/j.devcel.2015.10.017. [PubMed] [CrossRef] [Google Scholar]

410. Miller MC, Tavares R, Johanson CE, Hovanesian V, Donahue JE, Gonzalez L, Silverberg GD, Stopa EG. Hippocampal RAGE immunoreactivity in early and advanced Alzheimer's disease. Brain Res 1230: 273–280, 2008. doi:10.1016/j.brainres.2008.06.124. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

411. Miller SE, Sahlender DA, Graham SC, Höning S, Robinson MS, Peden AA, Owen DJ. The molecular basis for the endocytosis of small R-SNAREs by the clathrin adaptor CALM. Cell 147: 1118–1131, 2011. doi:10.1016/j.cell.2011.10.038. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

412. Miners JS, Schulz I, Love S. Differing associations between Aβ accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer's disease. J Cereb Blood Flow Metab 38: 103–115, 2018. doi:10.1177/0271678X17690761. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

413. Mitchell RW, On NH, Del Bigio MR, Miller DW, Hatch GM. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J Neurochem 117: 735–746, 2011. doi:10.1111/j.1471-4159.2011.07245.x. [PubMed] [CrossRef] [Google Scholar]

414. Mitragotri S, Anderson DG, Chen X, Chow EK, Ho D, Kabanov AV, Karp JM, Kataoka K, Mirkin CA, Petrosko SH, Shi J, Stevens MM, Sun S, Teoh S, Venkatraman SS, Xia Y, Wang S, Gu Z, Xu C. Accelerating the Translation of Nanomaterials in Biomedicine. ACS Nano 9: 6644–6654, 2015. doi:10.1021/acsnano.5b03569. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

415. Miyazaki K, Ohta Y, Nagai M, Morimoto N, Kurata T, Takehisa Y, Ikeda Y, Matsuura T, Abe K. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J Neurosci Res 89: 718–728, 2011. doi:10.1002/jnr.22594. [PubMed] [CrossRef] [Google Scholar]

416. Monro OR, Mackic JB, Yamada S, Segal MB, Ghiso J, Maurer C, Calero M, Frangione B, Zlokovic BV. Substitution at codon 22 reduces clearance of Alzheimer's amyloid-beta peptide from the cerebrospinal fluid and prevents its transport from the central nervous system into blood. Neurobiol Aging 23: 405–412, 2002. doi:10.1016/S0197-4580(01)00317-7. [PubMed] [CrossRef] [Google Scholar]

417. Montagne A, Gauberti M, Macrez R, Jullienne A, Briens A, Raynaud J-S, Louin G, Buisson A, Haelewyn B, Docagne F, Defer G, Vivien D, Maubert E. Ultra-sensitive molecular MRI of cerebrovascular cell activation enables early detection of chronic central nervous system disorders. Neuroimage 63: 760–770, 2012. doi:10.1016/j.neuroimage.2012.07.018. [PubMed] [CrossRef] [Google Scholar]

418. Montagne A, Nation DA, Pa J, Sweeney MD, Toga AW, Zlokovic BV. Brain imaging of neurovascular dysfunction in Alzheimer's disease. Acta Neuropathol 131: 687–707, 2016. doi:10.1007/s00401-016-1570-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

419. Montagne A, Nikolakopoulou AM, Zhao Z, Sagare AP, Si G, Lazic D, Barnes SR, Daianu M, Ramanathan A, Go A, Lawson EJ, Wang Y, Mack WJ, Thompson PM, Schneider JA, Varkey J, Langen R, Mullins E, Jacobs RE, Zlokovic BV. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat Med 24: 326–337, 2018. doi:10.1038/nm.4482. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

420. Montagne A, Zhao Z, Zlokovic BV. Alzheimer's disease: a matter of blood-brain barrier dysfunction? J Exp Med 214: 3151–3169, 2017. doi:10.1084/jem.20171406. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

421. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE, Liu CY, Amezcua L, Harrington MG, Chui HC, Law M, Zlokovic BV. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85: 296–302, 2015. doi:10.1016/j.neuron.2014.12.032. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

422. Mooradian AD, Chung HC, Shah GN. GLUT-1 expression in the cerebra of patients with Alzheimer's disease. Neurobiol Aging 18: 469–474, 1997. doi:10.1016/S0197-4580(97)00111-5. [PubMed] [CrossRef] [Google Scholar]

423. Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer JL, Jimenez-Sanchez M, Bento CF, Puri C, Zavodszky E, Siddiqi F, Lavau CP, Betton M, O'Kane CJ, Wechsler DS, Rubinsztein DC. PICALM modulates autophagy activity and tau accumulation. Nat Commun 5: 4998, 2014. doi:10.1038/ncomms5998. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

424. Mosconi L, Sorbi S, de Leon MJ, Li Y, Nacmias B, Myoung PS, Tsui W, Ginestroni A, Bessi V, Fayyazz M, Caffarra P, Pupi A. Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer's disease. J Nucl Med 47: 1778–1786, 2006. [PubMed] [Google Scholar]

425. Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, Reiman EM, Holthoff V, Kalbe E, Sorbi S, Diehl-Schmid J, Perneczky R, Clerici F, Caselli R, Beuthien-Baumann B, Kurz A, Minoshima S, de Leon MJ. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nucl Med 49: 390–398, 2008. doi:10.2967/jnumed.107.045385. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

426. Mulder M, Blokland A, van den Berg DJ, Schulten H, Bakker AH, Terwel D, Honig W, de Kloet ER, Havekes LM, Steinbusch HW, de Lange EC. Apolipoprotein E protects against neuropathology induced by a high-fat diet and maintains the integrity of the blood-brain barrier during aging. Lab Invest 81: 953–960, 2001. doi:10.1038/labinvest.3780307. [PubMed] [CrossRef] [Google Scholar]

427. Nagasawa K, Chiba H, Fujita H, Kojima T, Saito T, Endo T, Sawada N. Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells. J Cell Physiol 208: 123–132, 2006. doi:10.1002/jcp.20647. [PubMed] [CrossRef] [Google Scholar]

428. Natté R, Maat-Schieman ML, Haan J, Bornebroek M, Roos RA, van Duinen SG. Dementia in hereditary cerebral hemorrhage with amyloidosis-Dutch type is associated with cerebral amyloid angiopathy but is independent of plaques and neurofibrillary tangles. Ann Neurol 50: 765–772, 2001. doi:10.1002/ana.10040. [PubMed] [CrossRef] [Google Scholar]

429. Nelson AR, Sweeney MD, Sagare AP, Zlokovic BV. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease. Biochim Biophys Acta 1862: 887–900, 2016. doi:10.1016/j.bbadis.2015.12.016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

430. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, Wenk MR, Goh ELK, Silver DL. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509: 503–506, 2014. doi:10.1038/nature13241. [PubMed] [CrossRef] [Google Scholar]

431. Nicaise C, Mitrecic D, Demetter P, De Decker R, Authelet M, Boom A, Pochet R. Impaired blood-brain and blood-spinal cord barriers in mutant SOD1-linked ALS rat. Brain Res 1301: 152–162, 2009. doi:10.1016/j.brainres.2009.09.018. [PubMed] [CrossRef] [Google Scholar]

432. Nicaise C, Soyfoo MS, Authelet M, De Decker R, Bataveljic D, Delporte C, Pochet R. Aquaporin-4 overexpression in rat ALS model. Anat Rec (Hoboken) 292: 207–213, 2009. doi:10.1002/ar.20838. [PubMed] [CrossRef] [Google Scholar]

433. Nico B, Frigeri A, Nicchia GP, Corsi P, Ribatti D, Quondamatteo F, Herken R, Girolamo F, Marzullo A, Svelto M, Roncali L. Severe alterations of endothelial and glial cells in the blood-brain barrier of dystrophic mdx mice. Glia 42: 235–251, 2003. doi:10.1002/glia.10216. [PubMed] [CrossRef] [Google Scholar]

434. Nicolas G, Pottier C, Maltête D, Coutant S, Rovelet-Lecrux A, Legallic S, Rousseau S, Vaschalde Y, Guyant-Maréchal L, Augustin J, Martinaud O, Defebvre L, Krystkowiak P, Pariente J, Clanet M, Labauge P, Ayrignac X, Lefaucheur R, Le Ber I, Frébourg T, Hannequin D, Campion D. Mutation of the PDGFRB gene as a cause of idiopathic basal ganglia calcification. Neurology 80: 181–187, 2013. doi:10.1212/WNL.0b013e31827ccf34. [PubMed] [CrossRef] [Google Scholar]

435. Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H, Maier P, Rueger P, Stracke JO, Lau W, Tissot AC, Loetscher H, Ghosh A, Freskgård P-O. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81: 49–60, 2014. doi:10.1016/j.neuron.2013.10.061. [PubMed] [CrossRef] [Google Scholar]

436. Nikolakopoulou AM, Zhao Z, Montagne A, Zlokovic BV. Regional early and progressive loss of brain pericytes but not vascular smooth muscle cells in adult mice with disrupted platelet-derived growth factor receptor-β signaling. PLoS One 12: e0176225, 2017. doi:10.1371/journal.pone.0176225. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

437. Nishitsuji K, Hosono T, Nakamura T, Bu G, Michikawa M. Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain barrier model. J Biol Chem 286: 17536–17542, 2011. doi:10.1074/jbc.M111.225532. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

438. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161: 653–660, 2003. doi:10.1083/jcb.200302070. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

439. Niu F, Yao H, Zhang W, Sutliff RL, Buch S. Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders. J Neurosci 34: 11812–11825, 2014. doi:10.1523/JNEUROSCI.1139-14.2014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

440. Niwa A, Matsuo K, Shindo A, Yata K, Shiraishi T, Tomimoto H. Clinical and neuropathological findings in a patient with familial Alzheimer disease showing a mutation in the PSEN1 gene. Neuropathology 33: 199–203, 2013. doi:10.1111/j.1440-1789.2012.01340.x. [PubMed] [CrossRef] [Google Scholar]

441. Noble LJ, Wrathall JR. Distribution and time course of protein extravasation in the rat spinal cord after contusive injury. Brain Res 482: 57–66, 1989. doi:10.1016/0006-8993(89)90542-8. [PubMed] [CrossRef] [Google Scholar]

442. Nochlin D, Bird TD, Nemens EJ, Ball MJ, Sumi SM. Amyloid angiopathy in a Volga German family with Alzheimer's disease and a presenilin-2 mutation (N141I). Ann Neurol 43: 131–135, 1998. doi:10.1002/ana.410430124. [PubMed] [CrossRef] [Google Scholar]

443. Noorbakhsh F, Baker GB, Power C. Allopregnanolone and neuroinflammation: a focus on multiple sclerosis. Front Cell Neurosci 8: 134, 2014. doi:10.3389/fncel.2014.00134. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

444. Nuutinen T, Suuronen T, Kauppinen A, Salminen A. Clusterin: a forgotten player in Alzheimer's disease. Brain Res Brain Res Rev 61: 89–104, 2009. doi:10.1016/j.brainresrev.2009.05.007. [PubMed] [CrossRef] [Google Scholar]

445. Oba H, Araki T, Ohtomo K, Monzawa S, Uchiyama G, Koizumi K, Nogata Y, Kachi K, Shiozawa Z, Kobayashi M. Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging. Radiology 189: 843–846, 1993. doi:10.1148/radiology.189.3.8234713. [PubMed] [CrossRef] [Google Scholar]

446. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 19: 1584–1596, 2013. doi:10.1038/nm.3407. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

447. O'Donnell ME, Lam TI, Tran LQ, Foroutan S, Anderson SE. Estradiol reduces activity of the blood-brain barrier Na-K-Cl cotransporter and decreases edema formation in permanent middle cerebral artery occlusion. J Cereb Blood Flow Metab 26: 1234–1249, 2006. doi:10.1038/sj.jcbfm.9600278. [PubMed] [CrossRef] [Google Scholar]

448. O'Driscoll MC, Daly SB, Urquhart JE, Black GCM, Pilz DT, Brockmann K, McEntagart M, Abdel-Salam G, Zaki M, Wolf NI, Ladda RL, Sell S, D'Arrigo S, Squier W, Dobyns WB, Livingston JH, Crow YJ. Recessive mutations in the gene encoding the tight junction protein occludin cause band-like calcification with simplified gyration and polymicrogyria. Am J Hum Genet 87: 354–364, 2010. doi:10.1016/j.ajhg.2010.07.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

449. Ogura S, Kurata K, Hattori Y, Takase H, Ishiguro-Oonuma T, Hwang Y, Ahn S, Park I, Ikeda W, Kusuhara S, Fukushima Y, Nara H, Sakai H, Fujiwara T, Matsushita J, Ema M, Hirashima M, Minami T, Shibuya M, Takakura N, Kim P, Miyata T, Ogura Y, Uemura A. Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown. JCI Insight 2: e90905, 2017. doi:10.1172/jci.insight.90905. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

450. O'Kane RL, Hawkins RA. Na+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood-brain barrier. Am J Physiol Endocrinol Metab 285: E1167–E1173, 2003. doi:10.1152/ajpendo.00193.2003. [PubMed] [CrossRef] [Google Scholar]

451. O'Kane RL, Martínez-López I, DeJoseph MR, Viña JR, Hawkins RA. Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. J Biol Chem 274: 31891–31895, 1999. doi:10.1074/jbc.274.45.31891. [PubMed] [CrossRef] [Google Scholar]

452. Olazarán J, Ramos A, Boyano I, Alfayate E, Valentí M, Rábano A, Alvarez-Linera J. Pattern of and risk factors for brain microbleeds in neurodegenerative dementia. Am J Alzheimers Dis Other Demen 29: 263–269, 2014. doi:10.1177/1533317513517043. [PubMed] [CrossRef] [Google Scholar]

453. Oldendorf WH, Szabo J. Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am J Physiol 230: 94–98, 1976. [PubMed] [Google Scholar]

454. Omalu BI, DeKosky ST, Minster RL, Kamboh MI, Hamilton RL, Wecht CH. Chronic traumatic encephalopathy in a National Football League player. Neurosurgery 57: 128–134, 2005. doi:10.1227/01.NEU.0000163407.92769.ED. [PubMed] [CrossRef] [Google Scholar]

455. Omalu BI, Fitzsimmons RP, Hammers J, Bailes J. Chronic traumatic encephalopathy in a professional American wrestler. J Forensic Nurs 6: 130–136, 2010. doi:10.1111/j.1939-3938.2010.01078.x. [PubMed] [CrossRef] [Google Scholar]

456. Ortiz GG, Pacheco-Moisés FP, Macías-Islas MÁ, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED, Hernández-Navarro VE, Sánchez-López AL, Alatorre-Jiménez MA. Role of the blood-brain barrier in multiple sclerosis. Arch Med Res 45: 687–697, 2014. doi:10.1016/j.arcmed.2014.11.013. [PubMed] [CrossRef] [Google Scholar]

457. Ossenkoppele R, van der Flier WM, Zwan MD, Adriaanse SF, Boellaard R, Windhorst AD, Barkhof F, Lammertsma AA, Scheltens P, van Berckel BNM. Differential effect of APOE genotype on amyloid load and glucose metabolism in AD dementia. Neurology 80: 359–365, 2013. doi:10.1212/WNL.0b013e31827f0889. [PubMed] [CrossRef] [Google Scholar]

458. Pardridge WM. Molecular biology of the blood-brain barrier. Mol Biotechnol 30: 57–70, 2005. doi:10.1385/MB:30:1:057. [PubMed] [CrossRef] [Google Scholar]

459. Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32: 1959–1972, 2012. doi:10.1038/jcbfm.2012.126. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

460. Pardridge WM. Blood-brain barrier endogenous transporters as therapeutic targets: a new model for small molecule CNS drug discovery. Expert Opin Ther Targets 19: 1059–1072, 2015. doi:10.1517/14728222.2015.1042364. [PubMed] [CrossRef] [Google Scholar]

461. Pardridge WM, Buciak JL, Friden PM. Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo. J Pharmacol Exp Ther 259: 66–70, 1991. [PubMed] [Google Scholar]

462. Park DY, Lee J, Kim J, Kim K, Hong S, Han S, Kubota Y, Augustin HG, Ding L, Kim JW, Kim H, He Y, Adams RH, Koh GY. Plastic roles of pericytes in the blood-retinal barrier. Nat Commun 8: 15296, 2017. doi:10.1038/ncomms15296. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

463. Park HJ, Shin JY, Kim HN, Oh SH, Song SK, Lee PH. Mesenchymal stem cells stabilize the blood-brain barrier through regulation of astrocytes. Stem Cell Res Ther 6: 187, 2015. doi:10.1186/s13287-015-0180-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

464. Park L, Zhou P, Koizumi K, El Jamal S, Previti ML, Van Nostrand WE, Carlson G, Iadecola C. Brain and circulating levels of Aβ1-40 differentially contribute to vasomotor dysfunction in the mouse brain. Stroke 44: 198–204, 2013. doi:10.1161/STROKEAHA.112.670976. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

465. Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7: 710–723, 2006. doi:10.1038/nrn1971. [PubMed] [CrossRef] [Google Scholar]

466. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5: 584–590, 1985. doi:10.1038/jcbfm.1985.87. [PubMed] [CrossRef] [Google Scholar]

467. Paul J, Strickland S, Melchor JP. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer's disease. J Exp Med 204: 1999–2008, 2007. doi:10.1084/jem.20070304. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

468. Peacock ML, Warren JT Jr, Roses AD, Fink JK. Novel polymorphism in the A4 region of the amyloid precursor protein gene in a patient without Alzheimer's disease. Neurology 43: 1254–1256, 1993. doi:10.1212/WNL.43.6.1254. [PubMed] [CrossRef] [Google Scholar]

469. Peelaerts W, Bousset L, Van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, Van den Haute C, Melki R, Baekelandt V. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522: 340–344, 2015. doi:10.1038/nature14547. [PubMed] [CrossRef] [Google Scholar]

470. Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443: 700–704, 2006. doi:10.1038/nature05193. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

471. Persidsky Y, Heilman D, Haorah J, Zelivyanskaya M, Persidsky R, Weber GA, Shimokawa H, Kaibuchi K, Ikezu T. Rho-mediated regulation of tight junctions during monocyte migration across the blood-brain barrier in HIV-1 encephalitis (HIVE). Blood 107: 4770–4780, 2006. doi:10.1182/blood-2005-11-4721. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

472. Pfeiffer F, Schäfer J, Lyck R, Makrides V, Brunner S, Schaeren-Wiemers N, Deutsch U, Engelhardt B. Claudin-1 induced sealing of blood-brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis. Acta Neuropathol 122: 601–614, 2011. doi:10.1007/s00401-011-0883-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

473. Pienaar IS, Lee CH, Elson JL, McGuinness L, Gentleman SM, Kalaria RN, Dexter DT. Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson's disease. Neurobiol Dis 74: 392–405, 2015. doi:10.1016/j.nbd.2014.12.006. [PubMed] [CrossRef] [Google Scholar]

474. Pisani V, Stefani A, Pierantozzi M, Natoli S, Stanzione P, Franciotta D, Pisani A. Increased blood-cerebrospinal fluid transfer of albumin in advanced Parkinson's disease. J Neuroinflammation 9: 188, 2012. doi:10.1186/1742-2094-9-188. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

475. Podjaski C, Alvarez JI, Bourbonniere L, Larouche S, Terouz S, Bin JM, Lécuyer M-A, Saint-Laurent O, Larochelle C, Darlington PJ, Arbour N, Antel JP, Kennedy TE, Prat A. Netrin 1 regulates blood-brain barrier function and neuroinflammation. Brain 138: 1598–1612, 2015. doi:10.1093/brain/awv092. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

476. Poliakova T, Levin O, Arablinskiy A, Vasenina E, Zerr I. Cerebral microbleeds in early Alzheimer's disease. J Neurol 263: 1961–1968, 2016. doi:10.1007/s00415-016-8220-2. [PubMed] [CrossRef] [Google Scholar]

477. Poon C, McMahon D, Hynynen K. Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound. Neuropharmacology 120: 20–37, 2017. doi:10.1016/j.neuropharm.2016.02.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

478. Popovich PG, Horner PJ, Mullin BB, Stokes BT. A quantitative spatial analysis of the blood-spinal cord barrier. I. Permeability changes after experimental spinal contusion injury. Exp Neurol 142: 258–275, 1996. doi:10.1006/exnr.1996.0196. [PubMed] [CrossRef] [Google Scholar]

479. Posokhova E, Shukla A, Seaman S, Volate S, Hilton MB, Wu B, Morris H, Swing DA, Zhou M, Zudaire E, Rubin JS, St Croix B. GPR124 functions as a WNT7-specific coactivator of canonical β-catenin signaling. Cell Reports 10: 123–130, 2015. doi:10.1016/j.celrep.2014.12.020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

480. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell 146: 873–887, 2011. doi:10.1016/j.cell.2011.08.039. [PubMed] [CrossRef] [Google Scholar]

481. Potter R, Patterson BW, Elbert DL, Ovod V, Kasten T, Sigurdson W, Mawuenyega K, Blazey T, Goate A, Chott R, Yarasheski KE, Holtzman DM, Morris JC, Benzinger TLS, Bateman RJ. Increased in vivo amyloid-β42 production, exchange, and loss in presenilin mutation carriers. Sci Transl Med 5: 189ra77, 2013. doi:10.1126/scitranslmed.3005615. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

482. Prakash R, Carmichael ST. Blood-brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury. Curr Opin Neurol 28: 556–564, 2015. doi:10.1097/WCO.0000000000000248. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

483. Prineas JW, Parratt JDE. Oligodendrocytes and the early multiple sclerosis lesion. Ann Neurol 72: 18–31, 2012. doi:10.1002/ana.23634. [PubMed] [CrossRef] [Google Scholar]

484. Prinz M, Priller J. The role of peripheral immune cells in the CNS in steady state and disease. Nat Neurosci 20: 136–144, 2017. doi:10.1038/nn.4475. [PubMed] [CrossRef] [Google Scholar]

485. Proctor EA, Fee L, Tao Y, Redler RL, Fay JM, Zhang Y, Lv Z, Mercer IP, Deshmukh M, Lyubchenko YL, Dokholyan NV. Nonnative SOD1 trimer is toxic to motor neurons in a model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 113: 614–619, 2016. doi:10.1073/pnas.1516725113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

486. Protas HD, Chen K, Langbaum JBS, Fleisher AS, Alexander GE, Lee W, Bandy D, de Leon MJ, Mosconi L, Buckley S, Truran-Sacrey D, Schuff N, Weiner MW, Caselli RJ, Reiman EM. Posterior cingulate glucose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal, late-middle-aged persons at 3 levels of genetic risk for Alzheimer disease. JAMA Neurol 70: 320–325, 2013. doi:10.1001/2013.jamaneurol.286. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

487. Puchowicz MA, Xu K, Sun X, Ivy A, Emancipator D, LaManna JC. Diet-induced ketosis increases capillary density without altered blood flow in rat brain. Am J Physiol Endocrinol Metab 292: E1607–E1615, 2007. doi:10.1152/ajpendo.00512.2006. [PubMed] [CrossRef] [Google Scholar]

488. Qosa H, Miller DS, Pasinelli P, Trotti D. Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders. Brain Res 1628, Pt B: 298–316, 2015. doi:10.1016/j.brainres.2015.07.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

489. Quintero-Monzon O, Martin MM, Fernandez MA, Cappello CA, Krzysiak AJ, Osenkowski P, Wolfe MS. Dissociation between the processivity and total activity of γ-secretase: implications for the mechanism of Alzheimer's disease-causing presenilin mutations. Biochemistry 50: 9023–9035, 2011. doi:10.1021/bi2007146. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

490. Quistgaard EM, Löw C, Moberg P, Trésaugues L, Nordlund P. Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters. Nat Struct Mol Biol 20: 766–768, 2013. doi:10.1038/nsmb.2569. [PubMed] [CrossRef] [Google Scholar]

491. Rapoport SI. Osmotic opening of the blood-brain barrier: principles, mechanism, and therapeutic applications. Cell Mol Neurobiol 20: 217–230, 2000. doi:10.1023/A:1007049806660. [PubMed] [CrossRef] [Google Scholar]

492. Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34: 207–217, 1967. doi:10.1083/jcb.34.1.207. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

493. Reijerkerk A, Lopez-Ramirez MA, van Het Hof B, Drexhage JAR, Kamphuis WW, Kooij G, Vos JB, van der Pouw Kraan TCTM, van Zonneveld AJ, Horrevoets AJ, Prat A, Romero IA, de Vries HE. MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: implications for multiple sclerosis. J Neurosci 33: 6857–6863, 2013. doi:10.1523/JNEUROSCI.3965-12.2013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

494. Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, Saunders AM, Hardy J. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc Natl Acad Sci USA 101: 284–289, 2004. doi:10.1073/pnas.2635903100. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

495. Reitz C, Cheng R, Rogaeva E, Lee JH, Tokuhiro S, Zou F, Bettens K, Sleegers K, Tan EK, Kimura R, Shibata N, Arai H, Kamboh MI, Prince JA, Maier W, Riemenschneider M, Owen M, Harold D, Hollingworth P, Cellini E, Sorbi S, Nacmias B, Takeda M, Pericak-Vance MA, Haines JL, Younkin S, Williams J, van Broeckhoven C, Farrer LA, St George-Hyslop PH, Mayeux R; Genetic and Environmental Risk in Alzheimer Disease 1 Consortium . Meta-analysis of the association between variants in SORL1 and Alzheimer disease. Arch Neurol 68: 99–106, 2011. doi:10.1001/archneurol.2010.346. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

496. Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA. Evidence for a 'paravascular' fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326: 47–63, 1985. doi:10.1016/0006-8993(85)91383-6. [PubMed] [CrossRef] [Google Scholar]

497. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita V-M, Kaivorinne A-L, Hölttä-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chiò A, Restagno G, Borghero G, Sabatelli M, Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ; ITALSGEN Consortium . A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72: 257–268, 2011. doi:10.1016/j.neuron.2011.09.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

498. Ridder K, Keller S, Dams M, Rupp A-K, Schlaudraff J, Del Turco D, Starmann J, Macas J, Karpova D, Devraj K, Depboylu C, Landfried B, Arnold B, Plate KH, Höglinger G, Sültmann H, Altevogt P, Momma S. Extracellular vesicle-mediated transfer of genetic information between the hematopoietic system and the brain in response to inflammation. PLoS Biol 12: e1001874, 2014. doi:10.1371/journal.pbio.1001874. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

499. Rigau V, Morin M, Rousset M-C, de Bock F, Lebrun A, Coubes P, Picot M-C, Baldy-Moulinier M, Bockaert J, Crespel A, Lerner-Natoli M. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain 130: 1942–1956, 2007. doi:10.1093/brain/awm118. [PubMed] [CrossRef] [Google Scholar]

500. Ringman JM, Monsell S, Ng DW, Zhou Y, Nguyen A, Coppola G, Van Berlo V, Mendez MF, Tung S, Weintraub S, Mesulam M-M, Bigio EH, Gitelman DR, Fisher-Hubbard AO, Albin RL, Vinters HV. Neuropathology of Autosomal Dominant Alzheimer Disease in the National Alzheimer Coordinating Center Database. J Neuropathol Exp Neurol 75: 284–290, 2016. doi:10.1093/jnen/nlv028. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

501. Rite I, Machado A, Cano J, Venero JL. Blood-brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J Neurochem 101: 1567–1582, 2007. doi:10.1111/j.1471-4159.2007.04567.x. [PubMed] [CrossRef] [Google Scholar]

502. Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH, Grindstaff KK, Mengesha W, Raman C, Zerangue N. Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier. Endocrinology 149: 6251–6261, 2008. doi:10.1210/en.2008-0378. [PubMed] [CrossRef] [Google Scholar]

503. Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, Katayama T, Baldwin CT, Cheng R, Hasegawa H, Chen F, Shibata N, Lunetta KL, Pardossi-Piquard R, Bohm C, Wakutani Y, Cupples LA, Cuenco KT, Green RC, Pinessi L, Rainero I, Sorbi S, Bruni A, Duara R, Friedland RP, Inzelberg R, Hampe W, Bujo H, Song Y-Q, Andersen OM, Willnow TE, Graff-Radford N, Petersen RC, Dickson D, Der SD, Fraser PE, Schmitt-Ulms G, Younkin S, Mayeux R, Farrer LA, St George-Hyslop P. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39: 168–177, 2007. doi:10.1038/ng1943. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

504. Rokka J, Grönroos TJ, Viljanen T, Solin O, Haaparanta-Solin M. HPLC and TLC methods for analysis of [18F]FDG and its metabolites from biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 1048: 140–149, 2017. doi:10.1016/j.jchromb.2017.01.042. [PubMed] [CrossRef] [Google Scholar]

505. Rosenberg GA. Ischemic brain edema. Prog Cardiovasc Dis 42: 209–216, 1999. doi:10.1016/S0033-0620(99)70003-4. [PubMed] [CrossRef] [Google Scholar]

506. Ruitenberg A, den Heijer T, Bakker SLM, van Swieten JC, Koudstaal PJ, Hofman A, Breteler MMB. Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol 57: 789–794, 2005. doi:10.1002/ana.20493. [PubMed] [CrossRef] [Google Scholar]

507. Runge VM, Wells JW, Baldwin SA, Scheff SW, Blades DA. Evaluation of the temporal evolution of acute spinal cord injury. Invest Radiol 32: 105–110, 1997. doi:10.1097/00004424-199702000-00006. [PubMed] [CrossRef] [Google Scholar]

508. Rustenhoven J, Aalderink M, Scotter EL, Oldfield RL, Bergin PS, Mee EW, Graham ES, Faull RLM, Curtis MA, Park TI-H, Dragunow M. TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J Neuroinflammation 13: 37, 2016. doi:10.1186/s12974-016-0503-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

509. Ryu JK, McLarnon JG. A leaky blood-brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer's disease brain. J Cell Mol Med 13, 9A: 2911–2925, 2009. doi:10.1111/j.1582-4934.2008.00434.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

510. Ryu JK, Petersen MA, Murray SG, Baeten KM, Meyer-Franke A, Chan JP, Vagena E, Bedard C, Machado MR, Rios Coronado PE, Prod'homme T, Charo IF, Lassmann H, Degen JL, Zamvil SS, Akassoglou K. Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nat Commun 6: 8164, 2015. doi:10.1038/ncomms9164. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

511. Sacktor N, Skolasky RL, Seaberg E, Munro C, Becker JT, Martin E, Ragin A, Levine A, Miller E. Prevalence of HIV-associated neurocognitive disorders in the Multicenter AIDS Cohort Study. Neurology 86: 334–340, 2016. doi:10.1212/WNL.0000000000002277. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

512. Sagare A, Deane R, Bell RD, Johnson B, Hamm K, Pendu R, Marky A, Lenting PJ, Wu Z, Zarcone T, Goate A, Mayo K, Perlmutter D, Coma M, Zhong Z, Zlokovic BV. Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med 13: 1029–1031, 2007. doi:10.1038/nm1635. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

513. Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, Zlokovic BV. Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun 4: 2932, 2013. doi:10.1038/ncomms3932. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

514. Saito S, Ihara M. Interaction between cerebrovascular disease and Alzheimer pathology. Curr Opin Psychiatry 29: 168–173, 2016. doi:10.1097/YCO.0000000000000239. [PubMed] [CrossRef] [Google Scholar]

515. Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11: 4131–4142, 2000. doi:10.1091/mbc.11.12.4131. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

516. Salloway S, Gur T, Berzin T, Tavares R, Zipser B, Correia S, Hovanesian V, Fallon J, Kuo-Leblanc V, Glass D, Hulette C, Rosenberg C, Vitek M, Stopa E. Effect of APOE genotype on microvascular basement membrane in Alzheimer's disease. J Neurol Sci 203-204: 183–187, 2002. doi:10.1016/S0022-510X(02)00288-5. [PubMed] [CrossRef] [Google Scholar]

517. Samuraki M, Matsunari I, Chen W-P, Yajima K, Yanase D, Fujikawa A, Takeda N, Nishimura S, Matsuda H, Yamada M. Partial volume effect-corrected FDG PET and grey matter volume loss in patients with mild Alzheimer's disease. Eur J Nucl Med Mol Imaging 34: 1658–1669, 2007. doi:10.1007/s00259-007-0454-x. [PubMed] [CrossRef] [Google Scholar]

518. Sanan DA, Weisgraber KH, Russell SJ, Mahley RW, Huang D, Saunders A, Schmechel D, Wisniewski T, Frangione B, Roses AD. Apolipoprotein E associates with beta amyloid peptide of Alzheimer's disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J Clin Invest 94: 860–869, 1994. doi:10.1172/JCI117407. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

519. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 235: 34–47, 2016. doi:10.1016/j.jconrel.2016.05.044. [PubMed] [CrossRef] [Google Scholar]

520. Sareen D, O'Rourke JG, Meera P, Muhammad AKMG, Grant S, Simpkinson M, Bell S, Carmona S, Ornelas L, Sahabian A, Gendron T, Petrucelli L, Baughn M, Ravits J, Harms MB, Rigo F, Bennett CF, Otis TS, Svendsen CN, Baloh RH. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med 5: 208ra149, 2013. doi:10.1126/scitranslmed.3007529. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

521. Sathiyanadan K, Coisne C, Enzmann G, Deutsch U, Engelhardt B. PSGL-1 and E/P-selectins are essential for T-cell rolling in inflamed CNS microvessels but dispensable for initiation of EAE. Eur J Immunol 44: 2287–2294, 2014. doi:10.1002/eji.201344214. [PubMed] [CrossRef] [Google Scholar]

522. Schachtrup C, Lu P, Jones LL, Lee JK, Lu J, Sachs BD, Zheng B, Akassoglou K. Fibrinogen inhibits neurite outgrowth via beta 3 integrin-mediated phosphorylation of the EGF receptor. Proc Natl Acad Sci USA 104: 11814–11819, 2007. doi:10.1073/pnas.0704045104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

523. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, Larson E, Levy-Lahad E, Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe D, Younkin S. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med 2: 864–870, 1996. doi:10.1038/nm0896-864. [PubMed] [CrossRef] [Google Scholar]

524. Schiavone S, Mhillaj E, Neri M, Morgese MG, Tucci P, Bove M, Valentino M, Di Giovanni G, Pomara C, Turillazzi E, Trabace L, Cuomo V. Early Loss of Blood-Brain Barrier Integrity Precedes NOX2 Elevation in the Prefrontal Cortex of an Animal Model of Psychosis. Mol Neurobiol 54: 2031–2044, 2017. doi:10.1007/s12035-016-9791-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

525. Schliep G, Felgenhauer K. Serum-CSF protein gradients, the blood-GSF barrier and the local immune response. J Neurol 218: 77–96, 1978. doi:10.1007/BF02402169. [PubMed] [CrossRef] [Google Scholar]

526. Sellal F, Wallon D, Martinez-Almoyna L, Marelli C, Dhar A, Oesterlé H, Rovelet-Lecrux A, Rousseau S, Kourkoulis CE, Rosand J, DiPucchio ZY, Frosch M, Gombert C, Audoin B, Miné M, Riant F, Frebourg T, Hannequin D, Campion D, Greenberg SM, Tournier-Lasserve E, Nicolas G. APP Mutations in Cerebral Amyloid Angiopathy with or without Cortical Calcifications: Report of Three Families and a Literature Review. J Alzheimers Dis 56: 37–46, 2017. doi:10.3233/JAD-160709. [PubMed] [CrossRef] [Google Scholar]

527. Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer's disease. Brain Pathol 23: 303–310, 2013. doi:10.1111/bpa.12004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

528. Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, Bis JC, Smith AV, Carassquillo MM, Lambert JC, Harold D, Schrijvers EMC, Ramirez-Lorca R, Debette S, Longstreth WT Jr, Janssens ACJW, Pankratz VS, Dartigues JF, Hollingworth P, Aspelund T, Hernandez I, Beiser A, Kuller LH, Koudstaal PJ, Dickson DW, Tzourio C, Abraham R, Antunez C, Du Y, Rotter JI, Aulchenko YS, Harris TB, Petersen RC, Berr C, Owen MJ, Lopez-Arrieta J, Varadarajan BN, Becker JT, Rivadeneira F, Nalls MA, Graff-Radford NR, Campion D, Auerbach S, Rice K, Hofman A, Jonsson PV, Schmidt H, Lathrop M, Mosley TH, Au R, Psaty BM, Uitterlinden AG, Farrer LA, Lumley T, Ruiz A, Williams J, Amouyel P, Younkin SG, Wolf PA, Launer LJ, Lopez OL, van Duijn CM, Breteler MMB; CHARGE Consortium; GERAD1 Consortium; EADI1 Consortium . Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303: 1832–1840, 2010. doi:10.1001/jama.2010.574. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

529. Shams S, Martola J, Granberg T, Li X, Shams M, Fereshtehnejad SM, Cavallin L, Aspelin P, Kristoffersen-Wiberg M, Wahlund LO. Cerebral microbleeds: different prevalence, topography, and risk factors depending on dementia diagnosis—the Karolinska Imaging Dementia Study. AJNR Am J Neuroradiol 36: 661–666, 2015. doi:10.3174/ajnr.A4176. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

530. Shams S, Wahlund L-O. Cerebral microbleeds as a biomarker in Alzheimer's disease? A review in the field. Biomarkers Med 10: 9–18, 2016. doi:10.2217/bmm.15.101. [PubMed] [CrossRef] [Google Scholar]

531. Sheline YI, Morris JC, Snyder AZ, Price JL, Yan Z, D'Angelo G, Liu C, Dixit S, Benzinger T, Fagan A, Goate A, Mintun MA. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Aβ42. J Neurosci 30: 17035–17040, 2010. doi:10.1523/JNEUROSCI.3987-10.2010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

532. Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C, Li Y, Aro P, Dator R, He C, Hipp MJ, Zabetian CP, Peskind ER, Hu S-C, Quinn JF, Galasko DR, Banks WA, Zhang J. Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson's disease. Acta Neuropathol 128: 639–650, 2014. doi:10.1007/s00401-014-1314-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

533. Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, Tsai RM, Spina S, Grinberg LT, Rojas JC, Gallardo G, Wang K, Roh J, Robinson G, Finn MB, Jiang H, Sullivan PM, Baufeld C, Wood MW, Sutphen C, McCue L, Xiong C, Del-Aguila JL, Morris JC, Cruchaga C, Fagan AM, Miller BL, Boxer AL, Seeley WW, Butovsky O, Barres BA, Paul SM, Holtzman DM; Alzheimer's Disease Neuroimaging Initiative . ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549: 523–527, 2017. doi:10.1038/nature24016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

534. Shi Y, Zhang L, Pu H, Mao L, Hu X, Jiang X, Xu N, Stetler RA, Zhang F, Liu X, Leak RK, Keep RF, Ji X, Chen J. Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun 7: 10523, 2016. doi:10.1038/ncomms10523. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

535. Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV. Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106: 1489–1499, 2000. doi:10.1172/JCI10498. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

536. Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6: 393–403, 2010. doi:10.1038/nrneurol.2010.74. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

537. Shulman Z, Shinder V, Klein E, Grabovsky V, Yeger O, Geron E, Montresor A, Bolomini-Vittori M, Feigelson SW, Kirchhausen T, Laudanna C, Shakhar G, Alon R. Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin. Immunity 30: 384–396, 2009. doi:10.1016/j.immuni.2008.12.020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

538. Siegenthaler JA, Sohet F, Daneman R. 'Sealing off the CNS': cellular and molecular regulation of blood-brain barriergenesis. Curr Opin Neurobiol 23: 1057–1064, 2013. doi:10.1016/j.conb.2013.06.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

539. Sigurbjörnsdóttir S, Mathew R, Leptin M. Molecular mechanisms of de novo lumen formation. Nat Rev Mol Cell Biol 15: 665–676, 2014. doi:10.1038/nrm3871. [PubMed] [CrossRef] [Google Scholar]

540. Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27: 1766–1791, 2007. doi:10.1038/sj.jcbfm.9600521. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

541. Simpson IA, Chundu KR, Davies-Hill T, Honer WG, Davies P. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer's disease. Ann Neurol 35: 546–551, 1994. doi:10.1002/ana.410350507. [PubMed] [CrossRef] [Google Scholar]

542. Simpson IA, Vannucci SJ, DeJoseph MR, Hawkins RA. Glucose transporter asymmetries in the bovine blood-brain barrier. J Biol Chem 276: 12725–12729, 2001. doi:10.1074/jbc.M010897200. [PubMed] [CrossRef] [Google Scholar]

543. Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, Kunkle BW, Boland A, Raybould R, Bis JC, Martin ER, Grenier-Boley B, Heilmann-Heimbach S, Chouraki V, Kuzma AB, Sleegers K, Vronskaya M, Ruiz A, Graham RR, Olaso R, Hoffmann P, Grove ML, Vardarajan BN, Hiltunen M, Nöthen MM, White CC, Hamilton-Nelson KL, Epelbaum J, Maier W, Choi S-H, Beecham GW, Dulary C, Herms S, Smith AV, Funk CC, Derbois C, Forstner AJ, Ahmad S, Li H, Bacq D, Harold D, Satizabal CL, Valladares O, Squassina A, Thomas R, Brody JA, Qu L, Sánchez-Juan P, Morgan T, Wolters FJ, Zhao Y, Garcia FS, Denning N, Fornage M, Malamon J, Naranjo MCD, Majounie E, Mosley TH, Dombroski B, Wallon D, Lupton MK, Dupuis J, Whitehead P, Fratiglioni L, Medway C, Jian X, Mukherjee S, Keller L, Brown K, Lin H, Cantwell LB, Panza F, McGuinness B, Moreno-Grau S, Burgess JD, Solfrizzi V, Proitsi P, Adams HH, Allen M, Seripa D, Pastor P, Cupples LA, Price ND, Hannequin D, Frank-García A, Levy D, Chakrabarty P, Caffarra P, Giegling I, Beiser AS, Giedraitis V, Hampel H, Garcia ME, Wang X, Lannfelt L, Mecocci P, Eiriksdottir G, Crane PK, Pasquier F, Boccardi V, Henández I, Barber RC, Scherer M, Tarraga L, Adams PM, Leber M, Chen Y, Albert MS, Riedel-Heller S, Emilsson V, Beekly D, Braae A, Schmidt R, Blacker D, Masullo C, Schmidt H, Doody RS, Spalletta G, Longstreth WT Jr, Fairchild TJ, Bossù P, Lopez OL, Frosch MP, Sacchinelli E, Ghetti B, Yang Q, Huebinger RM, Jessen F, Li S, Kamboh MI, Morris J, Sotolongo-Grau O, Katz MJ, Corcoran C, Dunstan M, Braddel A, Thomas C, Meggy A, Marshall R, Gerrish A, Chapman J, Aguilar M, Taylor S, Hill M, Fairén MD, Hodges A, Vellas B, Soininen H, Kloszewska I, Daniilidou M, Uphill J, Patel Y, Hughes JT, Lord J, Turton J, Hartmann AM, Cecchetti R, Fenoglio C, Serpente M, Arcaro M, Caltagirone C, Orfei MD, Ciaramella A, Pichler S, Mayhaus M, Gu W, Lleó A, Fortea J, Blesa R, Barber IS, Brookes K, Cupidi C, Maletta RG, Carrell D, Sorbi S, Moebus S, Urbano M, Pilotto A, Kornhuber J, Bosco P, Todd S, Craig D, Johnston J, Gill M, Lawlor B, Lynch A, Fox NC, Hardy J, Albin RL, Apostolova LG, Arnold SE, Asthana S, Atwood CS, Baldwin CT, Barnes LL, Barral S, Beach TG, Becker JT, Bigio EH, Bird TD, Boeve BF, Bowen JD, Boxer A, Burke JR, Burns JM, Buxbaum JD, Cairns NJ, Cao C, Carlson CS, Carlsson CM, Carney RM, Carrasquillo MM, Carroll SL, Diaz CC, Chui HC, Clark DG, Cribbs DH, Crocco EA, DeCarli C, Dick M, Duara R, Evans DA, Faber KM, Fallon KB, Fardo DW, Farlow MR, Ferris S, Foroud TM, Galasko DR, Gearing M, Geschwind DH, Gilbert JR, Graff-Radford NR, Green RC, Growdon JH, Hamilton RL, Harrell LE, Honig LS, Huentelman MJ, Hulette CM, Hyman BT, Jarvik GP, Abner E, Jin L-W, Jun G, Karydas A, Kaye JA, Kim R, Kowall NW, Kramer JH, LaFerla FM, Lah JJ, Leverenz JB, Levey AI, Li G, Lieberman AP, Lunetta KL, Lyketsos CG, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Morris JC, Murrell JR, Myers AJ, O'Bryant S, Olichney JM, Pankratz VS, Parisi JE, Paulson HL, Perry W, Peskind E, Pierce A, Poon WW, Potter H, Quinn JF, Raj A, Raskind M, Reisberg B, Reitz C, Ringman JM, Roberson ED, Rogaeva E, Rosen HJ, Rosenberg RN, Sager MA, Saykin AJ, Schneider JA, Schneider LS, Seeley WW, Smith AG, Sonnen JA, Spina S, Stern RA, Swerdlow RH, Tanzi RE, Thornton-Wells TA, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Van Eldik LJ, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Wilhelmsen KC, Williamson J, Wingo TS, Woltjer RL, Wright CB, Yu C-E, Yu L, Garzia F, Golamaully F, Septier G, Engelborghs S, Vandenberghe R, De Deyn PP, Fernadez CM, Benito YA, Thonberg H, Forsell C, Lilius L, Kinhult-Stählbom A, Kilander L, Brundin R, Concari L, Helisalmi S, Koivisto AM, Haapasalo A, Dermecourt V, Fievet N, Hanon O, Dufouil C, Brice A, Ritchie K, Dubois B, Himali JJ, Keene CD, Tschanz J, Fitzpatrick AL, Kukull WA, Norton M, Aspelund T, Larson EB, Munger R, Rotter JI, Lipton RB, Bullido MJ, Hofman A, Montine TJ, Coto E, Boerwinkle E, Petersen RC, Alvarez V, Rivadeneira F, Reiman EM, Gallo M, O'Donnell CJ, Reisch JS, Bruni AC, Royall DR, Dichgans M, Sano M, Galimberti D, St George-Hyslop P, Scarpini E, Tsuang DW, Mancuso M, Bonuccelli U, Winslow AR, Daniele A, Wu C-K, Peters O, Nacmias B, Riemenschneider M, Heun R, Brayne C, Rubinsztein DC, Bras J, Guerreiro R, Al-Chalabi A, Shaw CE, Collinge J, Mann D, Tsolaki M, Clarimón J, Sussams R, Lovestone S, O'Donovan MC, Owen MJ, Behrens TW, Mead S, Goate AM, Uitterlinden AG, Holmes C, Cruchaga C, Ingelsson M, Bennett DA, Powell J, Golde TE, Graff C, De Jager PL, Morgan K, Ertekin-Taner N, Combarros O, Psaty BM, Passmore P, Younkin SG, Berr C, Gudnason V, Rujescu D, Dickson DW, Dartigues J-F, DeStefano AL, Ortega-Cubero S, Hakonarson H, Campion D, Boada M, Kauwe JK, Farrer LA, Van Broeckhoven C, Ikram MA, Jones L, Haines JL, Tzourio C, Launer LJ, Escott-Price V, Mayeux R, Deleuze J-F, Amin N, Holmans PA, Pericak-Vance MA, Amouyel P, van Duijn CM, Ramirez A, Wang L-S, Lambert J-C, Seshadri S, Williams J, Schellenberg GD ARUK Consortium; GERAD/PERADES, CHARGE, ADGC, EADI . Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nat Genet 49: 1373–1384, 2017. doi:10.1038/ng.3916. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

544. Singleton AB, Hall R, Ballard CG, Perry RH, Xuereb JH, Rubinsztein DC, Tysoe C, Matthews P, Cordell B, Kumar-Singh S, De Jonghe C, Cruts M, van Broeckhoven C, Morris CM. Pathology of early-onset Alzheimer's disease cases bearing the Thr113-114ins presenilin-1 mutation. Brain 123: 2467–2474, 2000. doi:10.1093/brain/123.12.2467. [PubMed] [CrossRef] [Google Scholar]

545. Skillbäck T, Delsing L, Synnergren J, Mattsson N, Janelidze S, Nägga K, Kilander L, Hicks R, Wimo A, Winblad B, Hansson O, Blennow K, Eriksdotter M, Zetterberg H. CSF/serum albumin ratio in dementias: a cross-sectional study on 1861 patients. Neurobiol Aging 59: 1–9, 2017. doi:10.1016/j.neurobiolaging.2017.06.028. [PubMed] [CrossRef] [Google Scholar]

546. Skoog I, Wallin A, Fredman P, Hesse C, Aevarsson O, Karlsson I, Gottfries CG, Blennow K. A population study on blood-brain barrier function in 85-year-olds: relation to Alzheimer's disease and vascular dementia. Neurology 50: 966–971, 1998. doi:10.1212/WNL.50.4.966. [PubMed] [CrossRef] [Google Scholar]

547. Smith AJ, Yao X, Dix JA, Jin B-J, Verkman AS. Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife 6: e27679, 2017. doi:10.7554/eLife.27679. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

548. Smith DH, Hicks RR, Johnson VE, Bergstrom DA, Cummings DM, Noble LJ, Hovda D, Whalen M, Ahlers ST, LaPlaca M, Tortella FC, Duhaime A-C, Dixon CE. Pre-Clinical Traumatic Brain Injury Common Data Elements: Toward a Common Language Across Laboratories. J Neurotrauma 32: 1725–1735, 2015. doi:10.1089/neu.2014.3861. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

549. Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 277: 813–817, 1997. doi:10.1001/jama.1997.03540340047031. [PubMed] [CrossRef] [Google Scholar]

550. Snyder HM, Corriveau RA, Craft S, Faber JE, Greenberg SM, Knopman D, Lamb BT, Montine TJ, Nedergaard M, Schaffer CB, Schneider JA, Wellington C, Wilcock DM, Zipfel GJ, Zlokovic B, Bain LJ, Bosetti F, Galis ZS, Koroshetz W, Carrillo MC. Vascular contributions to cognitive impairment and dementia including Alzheimer's disease. Alzheimers Dement 11: 710–717, 2015. doi:10.1016/j.jalz.2014.10.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

551. Sohet F, Lin C, Munji RN, Lee SY, Ruderisch N, Soung A, Arnold TD, Derugin N, Vexler ZS, Yen FT, Daneman R. LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation. J Cell Biol 208: 703–711, 2015. doi:10.1083/jcb.201410131. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

552. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916, 1977. doi:10.1111/j.1471-4159.1977.tb10649.x. [PubMed] [CrossRef] [Google Scholar]

553. Sonkusare SK, Bonev AD, Ledoux J, Liedtke W, Kotlikoff MI, Heppner TJ, Hill-Eubanks DC, Nelson MT. Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336: 597–601, 2012. doi:10.1126/science.1216283. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

554. Soto I, Graham LC, Richter HJ, Simeone SN, Radell JE, Grabowska W, Funkhouser WK, Howell MC, Howell GR. APOE Stabilization by Exercise Prevents Aging Neurovascular Dysfunction and Complement Induction. PLoS Biol 13: e1002279, 2015. doi:10.1371/journal.pbio.1002279. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

555. Spector R, Robert Snodgrass S, Johanson CE. A balanced view of the cerebrospinal fluid composition and functions: focus on adult humans. Exp Neurol 273: 57–68, 2015. doi:10.1016/j.expneurol.2015.07.027. [PubMed] [CrossRef] [Google Scholar]

556. Starr JM, Farrall AJ, Armitage P, McGurn B, Wardlaw J. Blood-brain barrier permeability in Alzheimer's disease: a case-control MRI study. Psychiatry Res 171: 232–241, 2009. doi:10.1016/j.pscychresns.2008.04.003. [PubMed] [CrossRef] [Google Scholar]

557. Steiner O, Coisne C, Cecchelli R, Boscacci R, Deutsch U, Engelhardt B, Lyck R. Differential roles for endothelial ICAM-1, ICAM-2, and VCAM-1 in shear-resistant T cell arrest, polarization, and directed crawling on blood-brain barrier endothelium. J Immunol 185: 4846–4855, 2010. doi:10.4049/jimmunol.0903732. [PubMed] [CrossRef] [Google Scholar]

558. Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322: 1247–1250, 2008. doi:10.1126/science.1164594. [PubMed] [CrossRef] [Google Scholar]

559. Stewart PA, Wiley MJ. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail–chick transplantation chimeras. Dev Biol 84: 183–192, 1981. doi:10.1016/0012-1606(81)90382-1. [PubMed] [CrossRef] [Google Scholar]

560. Stoll J, Wadhwani KC, Smith QR. Identification of the cationic amino acid transporter (System y+) of the rat blood-brain barrier. J Neurochem 60: 1956–1959, 1993. doi:10.1111/j.1471-4159.1993.tb13428.x. [PubMed] [CrossRef] [Google Scholar]

561. Storck SE, Meister S, Nahrath J, Meißner JN, Schubert N, Di Spiezio A, Baches S, Vandenbroucke RE, Bouter Y, Prikulis I, Korth C, Weggen S, Heimann A, Schwaninger M, Bayer TA, Pietrzik CU. Endothelial LRP1 transports amyloid-β(1-42) across the blood-brain barrier. J Clin Invest 126: 123–136, 2016. doi:10.1172/JCI81108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

562. Strazza M, Pirrone V, Wigdahl B, Nonnemacher MR. Breaking down the barrier: the effects of HIV-1 on the blood-brain barrier. Brain Res 1399: 96–115, 2011. doi:10.1016/j.brainres.2011.05.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

563. Sui Y-T, Bullock KM, Erickson MA, Zhang J, Banks WA. Alpha synuclein is transported into and out of the brain by the blood-brain barrier. Peptides 62: 197–202, 2014. doi:10.1016/j.peptides.2014.09.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

564. Suidan GL, Dickerson JW, Johnson HL, Chan TW, Pavelko KD, Pirko I, Seroogy KB, Johnson AJ. Preserved vascular integrity and enhanced survival following neuropilin-1 inhibition in a mouse model of CD8 T cell-initiated CNS vascular permeability. J Neuroinflammation 9: 218, 2012. doi:10.1186/1742-2094-9-218. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

565. Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, Yan N. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature 490: 361–366, 2012. doi:10.1038/nature11524. [PubMed] [CrossRef] [Google Scholar]

566. Sun L, Zhou R, Yang G, Shi Y. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase. Proc Natl Acad Sci USA 114: E476–E485, 2017. doi:10.1073/pnas.1618657114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

567. Sun W, Hu Q, Ji W, Wright G, Gu Z. Leveraging Physiology for Precision Drug Delivery. Physiol Rev 97: 189–225, 2017. doi:10.1152/physrev.00015.2016. [CrossRef] [Google Scholar]

568. Suri S, Mackay CE, Kelly ME, Germuska M, Tunbridge EM, Frisoni GB, Matthews PM, Ebmeier KP, Bulte DP, Filippini N. Reduced cerebrovascular reactivity in young adults carrying the APOE ε4 allele. Alzheimers Dement 11: 648–57.e1, 2015. doi:10.1016/j.jalz.2014.05.1755. [PubMed] [CrossRef] [Google Scholar]

569. Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14: 133–150, 2018. doi:10.1038/nrneurol.2017.188. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

570. Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 19: 771–783, 2016. doi:10.1038/nn.4288. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

571. Sweeney MD, Sagare AP, Zlokovic BV. Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer's disease. J Cereb Blood Flow Metab 35: 1055–1068, 2015. doi:10.1038/jcbfm.2015.76. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

572. Szaruga M, Veugelen S, Benurwar M, Lismont S, Sepulveda-Falla D, Lleo A, Ryan NS, Lashley T, Fox NC, Murayama S, Gijsen H, De Strooper B, Chávez-Gutiérrez L. Qualitative changes in human γ-secretase underlie familial Alzheimer's disease. J Exp Med 212: 2003–2013, 2015. doi:10.1084/jem.20150892. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

573. Szpak GM, Lewandowska E, Wierzba-Bobrowicz T, Bertrand E, Pasennik E, Mendel T, Stepień T, Leszczyńska A, Rafałowska J. Small cerebral vessel disease in familial amyloid and non-amyloid angiopathies: FAD-PS-1 (P117L) mutation and CADASIL. Immunohistochemical and ultrastructural studies. Folia Neuropathol 45: 192–204, 2007. [PubMed] [Google Scholar]

574. Taheri S, Rosenberg GA, Ford C. Quantification of blood-to-brain transfer rate in multiple sclerosis. Mult Scler Relat Disord 2: 124–132, 2013. doi:10.1016/j.msard.2012.09.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

575. Tallquist MD, French WJ, Soriano P. Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol 1: E52, 2003. doi:10.1371/journal.pbio.0000052. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

576. Tam SJ, Richmond DL, Kaminker JS, Modrusan Z, Martin-McNulty B, Cao TC, Weimer RM, Carano RAD, van Bruggen N, Watts RJ. Death receptors DR6 and TROY regulate brain vascular development. Dev Cell 22: 403–417, 2012. doi:10.1016/j.devcel.2011.11.018. [PubMed] [CrossRef] [Google Scholar]

577. Tan X, Chen C, Zhu Y, Deng J, Qiu X, Huang S, Shang F, Cheng B, Liu Y. Proteotoxic Stress Desensitizes TGF-beta Signaling Through Receptor Downregulation in Retinal Pigment Epithelial Cells. Curr Mol Med 17: 189–199, 2017. doi:10.2174/1566524017666170619113435. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

578. Tang G, Liu Y, Zhang Z, Lu Y, Wang Y, Huang J, Li Y, Chen X, Gu X, Wang Y, Yang G-Y. Mesenchymal stem cells maintain blood-brain barrier integrity by inhibiting aquaporin-4 upregulation after cerebral ischemia. Stem Cells 32: 3150–3162, 2014. doi:10.1002/stem.1808. [PubMed] [CrossRef] [Google Scholar]

579. Tanifum EA, Starosolski ZA, Fowler SW, Jankowsky JL, Annapragada AV. Cerebral vascular leak in a mouse model of amyloid neuropathology. J Cereb Blood Flow Metab 34: 1646–1654, 2014. doi:10.1038/jcbfm.2014.125. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

580. Tanzi RE. The genetics of Alzheimer disease. Cold Spring Harb Perspect Med 2: a006296, 2012. doi:10.1101/cshperspect.a006296. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

581. Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Ménard J, Zetterberg H, Wisniewski T, de Leon MJ. Clearance systems in the brain–implications for Alzheimer diseaser. Nat Rev Neurol 12: 248, 2016. doi:10.1038/nrneurol.2016.36. [PubMed] [CrossRef] [Google Scholar]

582. Taylor CJ, Nicola PA, Wang S, Barrand MA, Hladky SB. Transporters involved in regulation of intracellular pH in primary cultured rat brain endothelial cells. J Physiol 576: 769–785, 2006. doi:10.1113/jphysiol.2006.117374. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

583. Thakker DR, Weatherspoon MR, Harrison J, Keene TE, Lane DS, Kaemmerer WF, Stewart GR, Shafer LL. Intracerebroventricular amyloid-beta antibodies reduce cerebral amyloid angiopathy and associated micro-hemorrhages in aged Tg2576 mice. Proc Natl Acad Sci USA 106: 4501–4506, 2009. doi:10.1073/pnas.0813404106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

584. Thambisetty M, Beason-Held L, An Y, Kraut MA, Resnick SM. APOE epsilon4 genotype and longitudinal changes in cerebral blood flow in normal aging. Arch Neurol 67: 93–98, 2010. doi:10.1001/archneurol.2009.913. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

585. Theiler K. The House Mouse. Development and Normal Stages From Fertilization to 4 Weeks of Age. Berlin: Springer-Verlag, 1972, p. 1–168. [Google Scholar]

586. Thomas RS, Henson A, Gerrish A, Jones L, Williams J, Kidd EJ. Decreasing the expression of PICALM reduces endocytosis and the activity of β-secretase: implications for Alzheimer's disease. BMC Neurosci 17: 50, 2016. doi:10.1186/s12868-016-0288-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

587. Thompson AG, Gray E, Heman-Ackah SM, Mäger I, Talbot K, Andaloussi SE, Wood MJ, Turner MR. Extracellular vesicles in neurodegenerative disease: pathogenesis to biomarkers. Nat Rev Neurol 12: 346–357, 2016. doi:10.1038/nrneurol.2016.68. [PubMed] [CrossRef] [Google Scholar]

588. Thompson BJ, Sanchez-Covarrubias L, Slosky LM, Zhang Y, Laracuente ML, Ronaldson PT. Hypoxia/reoxygenation stress signals an increase in organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier: relevance to CNS drug delivery. J Cereb Blood Flow Metab 34: 699–707, 2014. doi:10.1038/jcbfm.2014.4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

589. Tian Y, Chang JC, Fan EY, Flajolet M, Greengard P. Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer's APP-CTF for terminal degradation via autophagy. Proc Natl Acad Sci USA 110: 17071–17076, 2013. doi:10.1073/pnas.1315110110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

590. Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. J Cell Biol 209: 493–506, 2015. doi:10.1083/jcb.201412147. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

591. Tikka S, Baumann M, Siitonen M, Pasanen P, Pöyhönen M, Myllykangas L, Viitanen M, Fukutake T, Cognat E, Joutel A, Kalimo H. CADASIL and CARASIL. Brain Pathol 24: 525–544, 2014. doi:10.1111/bpa.12181. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

592. Tkach M, Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell 164: 1226–1232, 2016. doi:10.1016/j.cell.2016.01.043. [PubMed] [CrossRef] [Google Scholar]

593. Toledo JB, Arnold SE, Raible K, Brettschneider J, Xie SX, Grossman M, Monsell SE, Kukull WA, Trojanowski JQ. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer's Coordinating Centre. Brain 136: 2697–2706, 2013. doi:10.1093/brain/awt188. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

594. Toledo JB, Toledo E, Weiner MW, Jack CR Jr, Jagust W, Lee VMY, Shaw LM, Trojanowski JQ; Alzheimer's Disease Neuroimaging Initiative . Cardiovascular risk factors, cortisol, and amyloid-β deposition in Alzheimer's Disease Neuroimaging Initiative. Alzheimers Dement 8: 483–489, 2012. doi:10.1016/j.jalz.2011.08.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

595. Tornavaca O, Chia M, Dufton N, Almagro LO, Conway DE, Randi AM, Schwartz MA, Matter K, Balda MS. ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation. J Cell Biol 208: 821–838, 2015. doi:10.1083/jcb.201404140. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

596. Torres-Vázquez J, Gitler AD, Fraser SD, Berk JD, Pham VN, Fishman MC, Childs S, Epstein JA, Weinstein BM. Semaphorin-plexin signaling guides patterning of the developing vasculature. Dev Cell 7: 117–123, 2004. doi:10.1016/j.devcel.2004.06.008. [PubMed] [CrossRef] [Google Scholar]

597. Traub O, Hertlein B, Kasper M, Eckert R, Krisciukaitis A, Hülser D, Willecke K. Characterization of the gap junction protein connexin37 in murine endothelium, respiratory epithelium, and after transfection in human HeLa cells. Eur J Cell Biol 77: 313–322, 1998. doi:10.1016/S0171-9335(98)80090-3. [PubMed] [CrossRef] [Google Scholar]

598. Treusch S, Hamamichi S, Goodman JL, Matlack KES, Chung CY, Baru V, Shulman JM, Parrado A, Bevis BJ, Valastyan JS, Han H, Lindhagen-Persson M, Reiman EM, Evans DA, Bennett DA, Olofsson A, DeJager PL, Tanzi RE, Caldwell KA, Caldwell GA, Lindquist S. Functional links between Aβ toxicity, endocytic trafficking, and Alzheimer's disease risk factors in yeast. Science 334: 1241–1245, 2011. doi:10.1126/science.1213210. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

599. Troost D, Van den Oord JJ, Vianney de Jong JM. Immunohistochemical characterization of the inflammatory infiltrate in amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 16: 401–410, 1990. doi:10.1111/j.1365-2990.1990.tb01276.x. [PubMed] [CrossRef] [Google Scholar]

600. Trougakos IP, Lourda M, Antonelou MH, Kletsas D, Gorgoulis VG, Papassideri IS, Zou Y, Margaritis LH, Boothman DA, Gonos ES. Intracellular clusterin inhibits mitochondrial apoptosis by suppressing p53-activating stress signals and stabilizing the cytosolic Ku70-Bax protein complex. Clin Cancer Res 15: 48–59, 2009. doi:10.1158/1078-0432.CCR-08-1805. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

601. Turowski P, Martinelli R, Crawford R, Wateridge D, Papageorgiou A-P, Lampugnani MG, Gamp AC, Vestweber D, Adamson P, Dejana E, Greenwood J. Phosphorylation of vascular endothelial cadherin controls lymphocyte emigration. J Cell Sci 121: 29–37, 2008. doi:10.1242/jcs.022681. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

602. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 117: 333–345, 2011. doi:10.1111/j.1471-4159.2011.07208.x. [PubMed] [CrossRef] [Google Scholar]

603. Ueda H, Baba T, Terada N, Kato Y, Fujii Y, Takayama I, Mei X, Ohno S. Immunolocalization of dystrobrevin in the astrocytic endfeet and endothelial cells in the rat cerebellum. Neurosci Lett 283: 121–124, 2000. doi:10.1016/S0304-3940(00)00925-3. [PubMed] [CrossRef] [Google Scholar]

604. Uetani H, Hirai T, Hashimoto M, Ikeda M, Kitajima M, Sakamoto F, Utsunomiya D, Oda S, Sugiyama S, Matsubara J, Yamashita Y. Prevalence and topography of small hypointense foci suggesting microbleeds on 3T susceptibility-weighted imaging in various types of dementia. AJNR Am J Neuroradiol 34: 984–989, 2013. doi:10.3174/ajnr.A3332. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

605. Uhlirova H, Kılıç K, Tian P, Thunemann M, Desjardins M, Saisan PA, Sakadžić S, Ness TV, Mateo C, Cheng Q, Weldy KL, Razoux F, Vandenberghe M, Cremonesi JA, Ferri CG, Nizar K, Sridhar VB, Steed TC, Abashin M, Fainman Y, Masliah E, Djurovic S, Andreassen OA, Silva GA, Boas DA, Kleinfeld D, Buxton RB, Einevoll GT, Dale AM, Devor A. Cell type specificity of neurovascular coupling in cerebral cortex. eLife 5: e14315, 2016. doi:10.7554/eLife.14315. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

606. Ujiie M, Dickstein DL, Carlow DA, Jefferies WA. Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 10: 463–470, 2003. doi:10.1038/sj.mn.7800212. [PubMed] [CrossRef] [Google Scholar]

607. Urich E, Lazic SE, Molnos J, Wells I, Freskgård P-O. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models. PLoS One 7: e38149, 2012. doi:10.1371/journal.pone.0038149. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

608. Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 36: 157–165, 2014. doi:10.1016/j.semcdb.2014.08.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

609. Vanhollebeke B, Stone OA, Bostaille N, Cho C, Zhou Y, Maquet E, Gauquier A, Cabochette P, Fukuhara S, Mochizuki N, Nathans J, Stainier DY. Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis. eLife 4: e06489, 2015. doi:10.7554/eLife.06489. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

610. Vanlandewijck M, He L, Mäe MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Laviña B, Gouveia L, Sun Y, Raschperger E, Räsänen M, Zarb Y, Mochizuki N, Keller A, Lendahl U, Betsholtz C. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554: 475–480, 2018. doi:10.1038/nature25739. [PubMed] [CrossRef] [Google Scholar]

611. Vatine GD, Al-Ahmad A, Barriga BK, Svendsen S, Salim A, Garcia L, Garcia VJ, Ho R, Yucer N, Qian T, Lim RG, Wu J, Thompson LM, Spivia WR, Chen Z, Van Eyk J, Palecek SP, Refetoff S, Shusta EV, Svendsen CN. Modeling Psychomotor Retardation using iPSCs from MCT8-Deficient Patients Indicates a Prominent Role for the Blood-Brain Barrier. Cell Stem Cell 20: 831–843.e5, 2017. doi:10.1016/j.stem.2017.04.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

612. Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer's disease and other neurological disorders. Lancet Neurol 10: 241–252, 2011. doi:10.1016/S1474-4422(10)70325-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

613. Verma S, Kumar M, Gurjav U, Lum S, Nerurkar VR. Reversal of West Nile virus-induced blood-brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology 397: 130–138, 2010. doi:10.1016/j.virol.2009.10.036. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

614. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MMB. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 348: 1215–1222, 2003. doi:10.1056/NEJMoa022066. [PubMed] [CrossRef] [Google Scholar]

615. Verstraete E, Biessels G-J, van Den Heuvel MP, Visser F, Luijten PR, van Den Berg LH. No evidence of microbleeds in ALS patients at 7 Tesla MRI. Amyotroph Lateral Scler 11: 555–557, 2010. doi:10.3109/17482968.2010.513053. [PubMed] [CrossRef] [Google Scholar]

616. Verstraeten A, Theuns J, Van Broeckhoven C. Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends Genet 31: 140–149, 2015. doi:10.1016/j.tig.2015.01.004. [PubMed] [CrossRef] [Google Scholar]

617. Vestweber D. How leukocytes cross the vascular endothelium. Nat Rev Immunol 15: 692–704, 2015. doi:10.1038/nri3908. [PubMed] [CrossRef] [Google Scholar]

618. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol 7: 31–40, 2011. doi:10.1038/nrneurol.2010.178. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

619. Villringer K, Sanz Cuesta BE, Ostwaldt A-C, Grittner U, Brunecker P, Khalil AA, Schindler K, Eisenblätter O, Audebert H, Fiebach JB. DCE-MRI blood-brain barrier assessment in acute ischemic stroke. Neurology 88: 433–440, 2017. doi:10.1212/WNL.0000000000003566. [PubMed] [CrossRef] [Google Scholar]

620. Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol 70: 871–880, 2011. doi:10.1002/ana.22516. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

621. Van Vliet EA, Aronica E, Gorter JA. Role of blood-brain barrier in temporal lobe epilepsy and pharmacoresistance. Neuroscience 277: 455–473, 2014. doi:10.1016/j.neuroscience.2014.07.030. [PubMed] [CrossRef] [Google Scholar]

622. Van Vliet EA, da Costa Araújo S, Redeker S, van Schaik R, Aronica E, Gorter JA. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 130: 521–534, 2007. doi:10.1093/brain/awl318. [PubMed] [CrossRef] [Google Scholar]

623. Volz KS, Jacobs AH, Chen HI, Poduri A, McKay AS, Riordan DP, Kofler N, Kitajewski J, Weissman I, Red-Horse K. Pericytes are progenitors for coronary artery smooth muscle. eLife 4: e10036, 2015. doi:10.7554/eLife.10036. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

624. Vorbrodt AW. Ultrastructural cytochemistry of blood-brain barrier endothelia. Prog Histochem Cytochem 18: 1–99, 1988. doi:10.1016/S0079-6336(88)80001-9. [PubMed] [CrossRef] [Google Scholar]

625. Vorbrodt AW, Dobrogowska DH. Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist's view. Brain Res Brain Res Rev 42: 221–242, 2003. doi:10.1016/S0165-0173(03)00177-2. [PubMed] [CrossRef] [Google Scholar]

626. Vos CMP, Geurts JJG, Montagne L, van Haastert ES, Bö L, van der Valk P, Barkhof F, de Vries HE. Blood-brain barrier alterations in both focal and diffuse abnormalities on postmortem MRI in multiple sclerosis. Neurobiol Dis 20: 953–960, 2005. doi:10.1016/j.nbd.2005.06.012. [PubMed] [CrossRef] [Google Scholar]

627. Wada K, Arai H, Takanashi M, Fukae J, Oizumi H, Yasuda T, Mizuno Y, Mochizuki H. Expression levels of vascular endothelial growth factor and its receptors in Parkinson's disease. Neuroreport 17: 705–709, 2006. doi:10.1097/01.wnr.0000215769.71657.65. [PubMed] [CrossRef] [Google Scholar]

628. Wälchli T, Wacker A, Frei K, Regli L, Schwab ME, Hoerstrup SP, Gerhardt H, Engelhardt B. Wiring the Vascular Network with Neural Cues: A CNS Perspective. Neuron 87: 271–296, 2015. doi:10.1016/j.neuron.2015.06.038. [PubMed] [CrossRef] [Google Scholar]

629. Wallin A, Blennow K, Rosengren L. Cerebrospinal fluid markers of pathogenetic processes in vascular dementia, with special reference to the subcortical subtype. Alzheimer Dis Assoc Disord 13, Suppl 3: S102–S105, 1999. [PubMed] [Google Scholar]

630. Wang D, Kranz-Eble P, De Vivo DC. Mutational analysis of GLUT1 (SLC2A1) in Glut-1 deficiency syndrome. Hum Mutat 16: 224–231, 2000. doi:10.1002/1098-1004(200009)16:3<224::AID-HUMU5>3.0.CO;2-P. [PubMed] [CrossRef] [Google Scholar]

631. Wang H, Golob EJ, Su M-Y. Vascular volume and blood-brain barrier permeability measured by dynamic contrast enhanced MRI in hippocampus and cerebellum of patients with MCI and normal controls. J Magn Reson Imaging 24: 695–700, 2006. doi:10.1002/jmri.20669. [PubMed] [CrossRef] [Google Scholar]

632. Wang W, Bodles-Brakhop AM, Barger SW. A Role for P-Glycoprotein in Clearance of Alzheimer Amyloid β-Peptide from the Brain. Curr Alzheimer Res 13: 615–620, 2016. doi:10.2174/1567205013666160314151012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

633. Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, Gilfillan S, Krishnan GM, Sudhakar S, Zinselmeyer BH, Holtzman DM, Cirrito JR, Colonna M. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160: 1061–1071, 2015. doi:10.1016/j.cell.2015.01.049. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

634. Wang Y, Chang H, Rattner A, Nathans J. Frizzled receptors in development and disease. Curr Top Dev Biol 117: 113–139, 2016. doi:10.1016/bs.ctdb.2015.11.028. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

635. Wang Y, Huang J, Ma Y, Tang G, Liu Y, Chen X, Zhang Z, Zeng L, Wang Y, Ouyang Y-B, Yang G-Y. MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4. J Cereb Blood Flow Metab 35: 1977–1984, 2015. doi:10.1038/jcbfm.2015.156. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

636. Wang Y, Rattner A, Zhou Y, Williams J, Smallwood PM, Nathans J. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151: 1332–1344, 2012. doi:10.1016/j.cell.2012.10.042. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

637. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, Lindley RI, O'Brien JT, Barkhof F, Benavente OR, Black SE, Brayne C, Breteler M, Chabriat H, Decarli C, de Leeuw F-E, Doubal F, Duering M, Fox NC, Greenberg S, Hachinski V, Kilimann I, Mok V, Oostenbrugge R, Pantoni L, Speck O, Stephan BCM, Teipel S, Viswanathan A, Werring D, Chen C, Smith C, van Buchem M, Norrving B, Gorelick PB, Dichgans M; STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1) . Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12: 822–838, 2013. doi:10.1016/S1474-4422(13)70124-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

638. Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ. Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 5: 88, 2014. doi:10.3389/fgene.2014.00088. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

639. Wegiel J, Wisniewski HM, Kuchna I, Tarnawski M, Badmajew E, Popovitch E, Kulczycki J, Dowjat WK, Wisniewski T. Cell-type-specific enhancement of amyloid-beta deposition in a novel presenilin-1 mutation (P117L). J Neuropathol Exp Neurol 57: 831–838, 1998. doi:10.1097/00005072-199809000-00004. [PubMed] [CrossRef] [Google Scholar]

640. Weller RO, Boche D, Nicoll JAR. Microvasculature changes and cerebral amyloid angiopathy in Alzheimer's disease and their potential impact on therapy. Acta Neuropathol 118: 87–102, 2009. doi:10.1007/s00401-009-0498-z. [PubMed] [CrossRef] [Google Scholar]

641. Wen PH, De Gasperi R, Sosa MAG, Rocher AB, Friedrich VL Jr, Hof PR, Elder GA. Selective expression of presenilin 1 in neural progenitor cells rescues the cerebral hemorrhages and cortical lamination defects in presenilin 1-null mutant mice. Development 132: 3873–3883, 2005. doi:10.1242/dev.01946. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

642. Wessel F, Winderlich M, Holm M, Frye M, Rivera-Galdos R, Vockel M, Linnepe R, Ipe U, Stadtmann A, Zarbock A, Nottebaum AF, Vestweber D. Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nat Immunol 15: 223–230, 2014. doi:10.1038/ni.2824. [PubMed] [CrossRef] [Google Scholar]

643. Wheeler MJ, Dempsey PC, Grace MS, Ellis KA, Gardiner PA, Green DJ, Dunstan DW. Sedentary behavior as a risk factor for cognitive decline? A focus on the influence of glycemic control in brain health. Alzheimers Dement (N Y) 3: 291–300, 2017. doi:10.1016/j.trci.2017.04.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

644. Whetstone WD, Hsu J-YC, Eisenberg M, Werb Z, Noble-Haeusslein LJ. Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J Neurosci Res 74: 227–239, 2003. doi:10.1002/jnr.10759. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

645. Whiteus C, Freitas C, Grutzendler J. Perturbed neural activity disrupts cerebral angiogenesis during a postnatal critical period. Nature 505: 407–411, 2014. doi:10.1038/nature12821. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

646. Wilhelmus MMM, Otte-Höller I, Davis J, Van Nostrand WE, de Waal RMW, Verbeek MM. Apolipoprotein E genotype regulates amyloid-beta cytotoxicity. J Neurosci 25: 3621–3627, 2005. doi:10.1523/JNEUROSCI.4213-04.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

647. Wilhelmus MMM, Otte-Höller I, van Triel JJJ, Veerhuis R, Maat-Schieman MLC, Bu G, de Waal RMW, Verbeek MM. Lipoprotein receptor-related protein-1 mediates amyloid-beta-mediated cell death of cerebrovascular cells. Am J Pathol 171: 1989–1999, 2007. doi:10.2353/ajpath.2007.070050. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

648. Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci 14: 1398–1405, 2011. doi:10.1038/nn.2946. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

649. Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D, Sengillo JD, Hillman S, Kong P, Nelson AR, Sullivan JS, Zhao Z, Meiselman HJ, Wendy RB, Soto J, Abel ED, Makshanoff J, Zuniga E, De Vivo DC, Zlokovic BV. GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci 18: 521–530, 2015. doi:10.1038/nn.3966. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

650. Winkler EA, Sengillo JD, Bell RD, Wang J, Zlokovic BV. Blood-spinal cord barrier pericyte reductions contribute to increased capillary permeability. J Cereb Blood Flow Metab 32: 1841–1852, 2012. doi:10.1038/jcbfm.2012.113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

651. Winkler EA, Sengillo JD, Sagare AP, Zhao Z, Ma Q, Zuniga E, Wang Y, Zhong Z, Sullivan JS, Griffin JH, Cleveland DW, Zlokovic BV. Blood-spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc Natl Acad Sci USA 111: E1035–E1042, 2014. doi:10.1073/pnas.1401595111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

652. Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH, Zlokovic BV. Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol 125: 111–120, 2013. doi:10.1007/s00401-012-1039-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

654. Worzfeld T, Schwaninger M. Apicobasal polarity of brain endothelial cells. J Cereb Blood Flow Metab 36: 340–362, 2016. doi:10.1177/0271678X15608644. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

655. Wu H, Deng R, Chen X, Wong WC, Chen H, Gao L, Nie Y, Wu W, Shen J. Caveolin-1 Is Critical for Lymphocyte Trafficking into Central Nervous System during Experimental Autoimmune Encephalomyelitis. J Neurosci 36: 5193–5199, 2016. doi:10.1523/JNEUROSCI.3734-15.2016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

656. Wu Z, Guo H, Chow N, Sallstrom J, Bell RD, Deane R, Brooks AI, Kanagala S, Rubio A, Sagare A, Liu D, Li F, Armstrong D, Gasiewicz T, Zidovetzki R, Song X, Hofman F, Zlokovic BV. Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat Med 11: 959–965, 2005. doi:10.1038/nm1287. [PubMed] [CrossRef] [Google Scholar]

657. Wyss L, Schäfer J, Liebner S, Mittelbronn M, Deutsch U, Enzmann G, Adams RH, Aurrand-Lions M, Plate KH, Imhof BA, Engelhardt B. Junctional adhesion molecule (JAM)-C deficient C57BL/6 mice develop a severe hydrocephalus. PLoS One 7: e45619, 2012. doi:10.1371/journal.pone.0045619. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

658. Xiao Q, Gil S-C, Yan P, Wang Y, Han S, Gonzales E, Perez R, Cirrito JR, Lee J-M. Role of phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) in intracellular amyloid precursor protein (APP) processing and amyloid plaque pathogenesis. J Biol Chem 287: 21279–21289, 2012. doi:10.1074/jbc.M111.338376. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

659. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M. Sleep drives metabolite clearance from the adult brain. Science 342: 373–377, 2013. doi:10.1126/science.1241224. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

660. Xu B, Zhang Y, Du X-F, Li J, Zi H-X, Bu J-W, Yan Y, Han H, Du J-L. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res 27: 882–897, 2017. doi:10.1038/cr.2017.62. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

661. Xu Q, Bernardo A, Walker D, Kanegawa T, Mahley RW, Huang Y. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci 26: 4985–4994, 2006. doi:10.1523/JNEUROSCI.5476-05.2006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

662. Yamadera M, Fujimura H, Inoue K, Toyooka K, Mori C, Hirano H, Sakoda S. Microvascular disturbance with decreased pericyte coverage is prominent in the ventral horn of patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 16: 393–401, 2015. doi:10.3109/21678421.2015.1011663. [PubMed] [CrossRef] [Google Scholar]

663. Yamamoto H, Ehling M, Kato K, Kanai K, van Lessen M, Frye M, Zeuschner D, Nakayama M, Vestweber D, Adams RH. Integrin β1 controls VE-cadherin localization and blood vessel stability. Nat Commun 6: 6429, 2015. doi:10.1038/ncomms7429. [PubMed] [CrossRef] [Google Scholar]

664. Yamamoto M, Ramirez SH, Sato S, Kiyota T, Cerny RL, Kaibuchi K, Persidsky Y, Ikezu T. Phosphorylation of claudin-5 and occludin by rho kinase in brain endothelial cells. Am J Pathol 172: 521–533, 2008. doi:10.2353/ajpath.2008.070076. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

665. Yamamoto T, Ochalski A, Hertzberg EL, Nagy JI. On the organization of astrocytic gap junctions in rat brain as suggested by LM and EM immunohistochemistry of connexin43 expression. J Comp Neurol 302: 853–883, 1990. doi:10.1002/cne.903020414. [PubMed] [CrossRef] [Google Scholar]

666. Yamamura H, Suzuki Y, Yamamura H, Asai K, Imaizumi Y. Hypoxic stress up-regulates Kir2.1 expression and facilitates cell proliferation in brain capillary endothelial cells. Biochem Biophys Res Commun 476: 386–392, 2016. doi:10.1016/j.bbrc.2016.05.131. [PubMed] [CrossRef] [Google Scholar]

667. Yao Y, Chen Z-L, Norris EH, Strickland S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun 5: 3413, 2014. doi:10.1038/ncomms4413. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

668. Yasuda M, Maeda K, Ikejiri Y, Kawamata T, Kuroda S, Tanaka C. A novel missense mutation in the presenilin-1 gene in a familial Alzheimer's disease pedigree with abundant amyloid angiopathy. Neurosci Lett 232: 29–32, 1997. doi:10.1016/S0304-3940(97)00569-7. [PubMed] [CrossRef] [Google Scholar]

669. Yates PA, Desmond PM, Phal PM, Steward C, Szoeke C, Salvado O, Ellis KA, Martins RN, Masters CL, Ames D, Villemagne VL, Rowe CC; AIBL Research Group . Incidence of cerebral microbleeds in preclinical Alzheimer disease. Neurology 82: 1266–1273, 2014. doi:10.1212/WNL.0000000000000285. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

670. Yemisci M, Caban S, Gursoy-Ozdemir Y, Lule S, Novoa-Carballal R, Riguera R, Fernandez-Megia E, Andrieux K, Couvreur P, Capan Y, Dalkara T. Systemically administered brain-targeted nanoparticles transport peptides across the blood-brain barrier and provide neuroprotection. J Cereb Blood Flow Metab 35: 469–475, 2015. doi:10.1038/jcbfm.2014.220. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

671. Yu AS, Hirayama BA, Timbol G, Liu J, Diez-Sampedro A, Kepe V, Satyamurthy N, Huang S-C, Wright EM, Barrio JR. Regional distribution of SGLT activity in rat brain in vivo. Am J Physiol Cell Physiol 304: C240–C247, 2013. doi:10.1152/ajpcell.00317.2012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

672. Yu YJ, Atwal JK, Zhang Y, Tong RK, Wildsmith KR, Tan C, Bien-Ly N, Hersom M, Maloney JA, Meilandt WJ, Bumbaca D, Gadkar K, Hoyte K, Luk W, Lu Y, Ernst JA, Scearce-Levie K, Couch JA, Dennis MS, Watts RJ. Therapeutic bispecific antibodies cross the blood-brain barrier in nonhuman primates. Sci Transl Med 6: 261ra154, 2014. doi:10.1126/scitranslmed.3009835. [PubMed] [CrossRef] [Google Scholar]

673. Yuen N, Lam TI, Wallace BK, Klug NR, Anderson SE, O'Donnell ME. Ischemic factor-induced increases in cerebral microvascular endothelial cell Na/H exchange activity and abundance: evidence for involvement of ERK1/2 MAP kinase. Am J Physiol Cell Physiol 306: C931–C942, 2014. doi:10.1152/ajpcell.00021.2013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

674. Zarranz JJ, Fernandez-Martinez M, Rodriguez O, Mateos B, Iglesias S, Baron J-C. Iowa APP mutation-related hereditary cerebral amyloid angiopathy (CAA): a new family from Spain. J Neurol Sci 363: 55–56, 2016. doi:10.1016/j.jns.2016.02.029. [PubMed] [CrossRef] [Google Scholar]

675. Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347: 1138–1142, 2015. doi:10.1126/science.aaa1934. [PubMed] [CrossRef] [Google Scholar]

676. Zenaro E, Pietronigro E, Della Bianca V, Piacentino G, Marongiu L, Budui S, Turano E, Rossi B, Angiari S, Dusi S, Montresor A, Carlucci T, Nanì S, Tosadori G, Calciano L, Catalucci D, Berton G, Bonetti B, Constantin G. Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 21: 880–886, 2015. doi:10.1038/nm.3913. [PubMed] [CrossRef] [Google Scholar]

677. Zhang H, Kim JK, Edwards CA, Xu Z, Taichman R, Wang C-Y. Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 7: 909–915, 2005. doi:10.1038/ncb1291. [PubMed] [CrossRef] [Google Scholar]

678. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34: 11929–11947, 2014. doi:10.1523/JNEUROSCI.1860-14.2014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

679. Zhang ZG, Tsang W, Zhang L, Powers C, Chopp M. Up-regulation of neuropilin-1 in neovasculature after focal cerebral ischemia in the adult rat. J Cereb Blood Flow Metab 21: 541–549, 2001. doi:10.1097/00004647-200105000-00008. [PubMed] [CrossRef] [Google Scholar]

680. Zhao C, Ling Z, Newman MB, Bhatia A, Carvey PM. TNF-alpha knockout and minocycline treatment attenuates blood-brain barrier leakage in MPTP-treated mice. Neurobiol Dis 26: 36–46, 2007. doi:10.1016/j.nbd.2006.11.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

681. Zhao N, Liu C-C, Qiao W, Bu G. Apolipoprotein E, Receptors, and Modulation of Alzheimer's Disease. Biol Psychiatry 83: 347–357, 2018. doi:10.1016/j.biopsych.2017.03.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

682. Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and Dysfunction of the Blood-Brain Barrier. Cell 163: 1064–1078, 2015. doi:10.1016/j.cell.2015.10.067. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

683. Zhao Z, Sagare AP, Ma Q, Halliday MR, Kong P, Kisler K, Winkler EA, Ramanathan A, Kanekiyo T, Bu G, Owens NC, Rege SV, Si G, Ahuja A, Zhu D, Miller CA, Schneider JA, Maeda M, Maeda T, Sugawara T, Ichida JK, Zlokovic BV. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci 18: 978–987, 2015. doi:10.1038/nn.4025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

684. Zhao Z, Zlokovic BV. Blood-brain barrier: a dual life of MFSD2A? Neuron 82: 728–730, 2014. doi:10.1016/j.neuron.2014.05.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

685. Zhao Z, Zlokovic BV. Remote control of BBB: a tale of exosomes and microRNA. Cell Res 27: 849–850, 2017. doi:10.1038/cr.2017.71. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

686. Zheng Y, Zhang Y, Barutello G, Chiu K, Arigoni M, Giampietro C, Cavallo F, Holmgren L. Angiomotin like-1 is a novel component of the N-cadherin complex affecting endothelial/pericyte interaction in normal and tumor angiogenesis. Sci Rep 6: 30622, 2016. doi:10.1038/srep30622. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

687. Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, O'Banion MK, Stojanovic K, Sagare A, Boillee S, Cleveland DW, Zlokovic BV. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci 11: 420–422, 2008. doi:10.1038/nn2073. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

688. Zhong Z, Ilieva H, Hallagan L, Bell R, Singh I, Paquette N, Thiyagarajan M, Deane R, Fernandez JA, Lane S, Zlokovic AB, Liu T, Griffin JH, Chow N, Castellino FJ, Stojanovic K, Cleveland DW, Zlokovic BV. Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells. J Clin Invest 119: 3437–3449, 2009. doi:10.1172/JCI38476. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

689. Zhou Y, Nathans J. Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev Cell 31: 248–256, 2014. doi:10.1016/j.devcel.2014.08.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

690. Zhou Y, Wang Y, Tischfield M, Williams J, Smallwood PM, Rattner A, Taketo MM, Nathans J. Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest 124: 3825–3846, 2014. doi:10.1172/JCI76431. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

691. Zipser BD, Johanson CE, Gonzalez L, Berzin TM, Tavares R, Hulette CM, Vitek MP, Hovanesian V, Stopa EG. Microvascular injury and blood-brain barrier leakage in Alzheimer's disease. Neurobiol Aging 28: 977–986, 2007. doi:10.1016/j.neurobiolaging.2006.05.016. [PubMed] [CrossRef] [Google Scholar]

692. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57: 178–201, 2008. doi:10.1016/j.neuron.2008.01.003. [PubMed] [CrossRef] [Google Scholar]

693. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci 12: 723–738, 2011. doi:10.1038/nrn3114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

694. Zlokovic BV. Cerebrovascular effects of apolipoprotein E: implications for Alzheimer disease. JAMA Neurol 70: 440–444, 2013. doi:10.1001/jamaneurol.2013.2152. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

695. Zlokovic BV, Begley DJ, Chain-Eliash DG. Blood-brain barrier permeability to leucine-enkephalin, d-alanine2-d-leucine5-enkephalin and their N-terminal amino acid (tyrosine). Brain Res 336: 125–132, 1985. doi:10.1016/0006-8993(85)90423-8. [PubMed] [CrossRef] [Google Scholar]

696. Zlokovic BV, Deane R, Sagare AP, Bell RD, Winkler EA. Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer's amyloid β-peptide elimination from the brain. J Neurochem 115: 1077–1089, 2010. doi:10.1111/j.1471-4159.2010.07002.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

697. Zlokovic BV, Griffin JH. Cytoprotective protein C pathways and implications for stroke and neurological disorders. Trends Neurosci 34: 198–209, 2011. doi:10.1016/j.tins.2011.01.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

698. Zlokovic BV, Hyman S, McComb JG, Lipovac MN, Tang G, Davson H. Kinetics of arginine-vasopressin uptake at the blood-brain barrier. Biochim Biophys Acta 1025: 191–198, 1990. doi:10.1016/0005-2736(90)90097-8. [PubMed] [CrossRef] [Google Scholar]

699. Zlokovic BV, Jovanovic S, Miao W, Samara S, Verma S, Farrell CL. Differential regulation of leptin transport by the choroid plexus and blood-brain barrier and high affinity transport systems for entry into hypothalamus and across the blood-cerebrospinal fluid barrier. Endocrinology 141: 1434–1441, 2000. doi:10.1210/endo.141.4.7435. [PubMed] [CrossRef] [Google Scholar]

700. Zlokovic BV, Martel CL, Matsubara E, McComb JG, Zheng G, McCluskey RT, Frangione B, Ghiso J. Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood-brain and blood-cerebrospinal fluid barriers. Proc Natl Acad Sci USA 93: 4229–4234, 1996. doi:10.1073/pnas.93.9.4229. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

701. Zlokovic BV, Segal MB, McComb JG, Hyman S, Weiss MH, Davson H. Kinetics of circulating vasopressin uptake by choroid plexus. Am J Physiol Renal Fluid Electrolyte Physiol 260: F216–F224, 1991. [PubMed] [Google Scholar]

702. Zonneveld HI, Goos JDC, Wattjes MP, Prins ND, Scheltens P, van der Flier WM, Kuijer JPA, Muller M, Barkhof F. Prevalence of cortical superficial siderosis in a memory clinic population. Neurology 82: 698–704, 2014. doi:10.1212/WNL.0000000000000150. [PubMed] [CrossRef] [Google Scholar]

703. del Zoppo GJ. Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience 158: 972–982, 2009. doi:10.1016/j.neuroscience.2008.08.028. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

704. Zovein AC, Luque A, Turlo KA, Hofmann JJ, Yee KM, Becker MS, Fassler R, Mellman I, Lane TF, Iruela-Arispe ML. Beta1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev Cell 18: 39–51, 2010. doi:10.1016/j.devcel.2009.12.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

705. Zuchero YJY, Chen X, Bien-Ly N, Bumbaca D, Tong RK, Gao X, Zhang S, Hoyte K, Luk W, Huntley MA, Phu L, Tan C, Kallop D, Weimer RM, Lu Y, Kirkpatrick DS, Ernst JA, Chih B, Dennis MS, Watts RJ. Discovery of Novel Blood-Brain Barrier Targets to Enhance Brain Uptake of Therapeutic Antibodies. Neuron 89: 70–82, 2016. doi:10.1016/j.neuron.2015.11.024. [PubMed] [CrossRef] [Google Scholar]

Posted by: kamalaae32493shiie.blogspot.com

Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335099/